http://repositorio.unb.br/handle/10482/34200
Fichier | Description | Taille | Format | |
---|---|---|---|---|
2018_ChristeHélidaMoreiraMontijo.pdf | 905,84 kB | Adobe PDF | Voir/Ouvrir |
Titre: | Sobre grupos profinitos de posto finito |
Auteur(s): | Montijo, Christe Hélida Moreira |
Orientador(es):: | Pinto, Aline Gomes da Silva |
Assunto:: | Grupos profinitos Grupos finitamente apresentados |
Date de publication: | 14-mar-2019 |
Data de defesa:: | 24-aoû-2018 |
Référence bibliographique: | MONTIJO, Christe Hélida Moreira. Sobre grupos profinitos de posto finito. 2018. 113 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2018. |
Résumé: | Esta dissertação está dividida em duas partes e é baseada no Capítulo 8 do livro ProfiniteGroups [22] de J. S. Wilson, e no artigo Uncountablymany non-commensurablefinitelypresentedpropgroups [19] de I. Snopce. A parte I é um estudo de grupos profinitos de posto finito. Estudamos grupos solúveis profinitos de posto finito e fornecemos uma série de caracterizações dos mesmos. Então mostramos que um grupo profinito arbitrário de posto finito é construído a partir de um grupo pronilpotente de posto finito, um grupo solúvel de posto finito e um grupo finito. E a Parte II é uma descrição de grupos pro-p de posto finito. Provamos que existe uma quantidade não enumerável de grupos pro-p uniformes metabelianos não comensuráveis de dimensão m, onde m é maior ou igual do que 3, e consequentemente, existe uma quantidade não enumerável de grupos pro-p finitamente apresentados não comensuráveis com um número minimal de geradores igual a m e um número minimal de relações. |
Abstract: | This master’s dissertation was divided into two parts, and it is based on the Chapter 8 of the book Profinite Groups of J. S. Wilson, and on the article Uncountably many non- commensurable finitely presented pro-p groups of I. Snopce. Part I is a study of profinite groups of finite rank. We study profinite soluble groups of finite rank and we give a number of characterizations of them. Then we show that an arbitrary profinite group of finite rank is built up from a pronilpotent group of finite rank, a soluble group of finite rank, and a finite group. Part II is an account of pro-p groups of finite rank. It is proved that there are uncountably many non-commensurable metabelian uniform pro-p groups of dimension m. Consequently, there are uncountably many non-commensurable finitely presented pro-p groups with minimal number of generators m and minimal number of relations. |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
Description: | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018. |
metadata.dc.description.ppg: | Programa de Pós-Graduação em Matemática |
Licença:: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
Agência financiadora: | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). |
Collection(s) : | Teses, dissertações e produtos pós-doutorado |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.