Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/52530
Arquivos associados a este item:
Não existem arquivos associados a este item.
Título: 4D trajectory conflict detection and resolution using decision tree pruning method
Autor(es): Monteiro, Lucas Borges
Ribeiro, Vitor Filincowsky
Garcia, Cristiano Perez
Rocha Filho, Geraldo Pereira
Li, Weigang
ORCID: https://orcid.org/0000-0003-4941-9542
https://orcid.org/0000-0001-9707-8952
https://orcid.org/0000-0003-4312-5391
https://orcid.org/0000-0001-6795-2768
https://orcid.org/0000-0003-1826-1850
Afiliação do autor: Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Assunto: ATM (Gerenciamento de tráfego aéreo)
Inteligência artificial (IA)
Transporte aéreo
Data de publicação: 11-Jan-2023
Editora: IEEE
Referência: MONTEIRO, Lucas Borges et al. 4D trajectory conflict detection and resolution using decision tree pruning method. IEEE Latin America Transactions, New York, v. 21, n. 2, p. 277 - 287, 2023. DOI: 10.1109/TLA.2023.10015220. Disponível em: https://ieeexplore.ieee.org/document/10015220. Acesso em: 03 jun. 2025.
Abstract: The aviation community develops Trajectory Based Operations (TBO) as an advancement in Air Traffic Management (ATM). There is still the need for an efficient scheme to present the trajectories, manage their associated data, and further detect and resolve the conflicts (CD&R) that should eventually occur. In this research, we develop a CD&R framework for managing predicted 4-Dimensional Trajectory (4DT). Using Not Only SQL (NoSQL) database (Cassandra and MongoDB), the 4D trajectories of related routes are presented, and the possible conflicts are detected using the strategy of Computing in NoSQL Database. Compared with other conflict detection algorithms, usually by the pairwise method with O(n 2) at least, the proposed Decision Tree Pruning Method (DTPM) effectively treats massive data sets. The 4DT data are collected by Trajectory Predictor (TP) concerning 58% of the whole Brazilian air traffic. The comparison results between Cassandra and MongoDB from the case studies show the effectiveness of the proposed methods for conflict detection. In addition, we prove that the conflict resolution approach is viable for application in real scenarios, finding near-optimal solutions for the conflicts identified by the framework. Finally, we also demonstrated the development of sustainable artificial intelligence in intelligent air transportation to improve safety in air traffic management.
Unidade Acadêmica: Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
Programa de pós-graduação: Programa de Pós-Graduação em Informática
DOI: 10.1109/TLA.2023.10015220
Versão da editora: https://ieeexplore.ieee.org/document/10015220/
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.