Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/52530
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : 4D trajectory conflict detection and resolution using decision tree pruning method
Autor : Monteiro, Lucas Borges
Ribeiro, Vitor Filincowsky
Garcia, Cristiano Perez
Rocha Filho, Geraldo Pereira
Li, Weigang
metadata.dc.identifier.orcid: https://orcid.org/0000-0003-4941-9542
https://orcid.org/0000-0001-9707-8952
https://orcid.org/0000-0003-4312-5391
https://orcid.org/0000-0001-6795-2768
https://orcid.org/0000-0003-1826-1850
metadata.dc.contributor.affiliation: Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação
Assunto:: ATM (Gerenciamento de tráfego aéreo)
Inteligência artificial (IA)
Transporte aéreo
Fecha de publicación : 11-ene-2023
Editorial : IEEE
Citación : MONTEIRO, Lucas Borges et al. 4D trajectory conflict detection and resolution using decision tree pruning method. IEEE Latin America Transactions, New York, v. 21, n. 2, p. 277 - 287, 2023. DOI: 10.1109/TLA.2023.10015220. Disponível em: https://ieeexplore.ieee.org/document/10015220. Acesso em: 03 jun. 2025.
Abstract: The aviation community develops Trajectory Based Operations (TBO) as an advancement in Air Traffic Management (ATM). There is still the need for an efficient scheme to present the trajectories, manage their associated data, and further detect and resolve the conflicts (CD&R) that should eventually occur. In this research, we develop a CD&R framework for managing predicted 4-Dimensional Trajectory (4DT). Using Not Only SQL (NoSQL) database (Cassandra and MongoDB), the 4D trajectories of related routes are presented, and the possible conflicts are detected using the strategy of Computing in NoSQL Database. Compared with other conflict detection algorithms, usually by the pairwise method with O(n 2) at least, the proposed Decision Tree Pruning Method (DTPM) effectively treats massive data sets. The 4DT data are collected by Trajectory Predictor (TP) concerning 58% of the whole Brazilian air traffic. The comparison results between Cassandra and MongoDB from the case studies show the effectiveness of the proposed methods for conflict detection. In addition, we prove that the conflict resolution approach is viable for application in real scenarios, finding near-optimal solutions for the conflicts identified by the framework. Finally, we also demonstrated the development of sustainable artificial intelligence in intelligent air transportation to improve safety in air traffic management.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
metadata.dc.description.ppg: Programa de Pós-Graduação em Informática
DOI: 10.1109/TLA.2023.10015220
metadata.dc.relation.publisherversion: https://ieeexplore.ieee.org/document/10015220/
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/handle/10482/52530/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.