Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/52528
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Dynamic reconfiguration for multi-magnet tracking in myokinetic prosthetic interfaces
Auteur(s): Mendez, Sergio Andres Pertuz
Mendes, Davi de Alencar
Gherardini, Marta
Arboleda, Daniel Marinho Muñoz
Ayala, Helon Vicente Hultmann
Cipriani, Christian
metadata.dc.identifier.orcid: https://orcid.org/0000-0002-6311-3251
https://orcid.org/0000-0002-2156-5516
https://orcid.org/0000-0002-9219-6463
https://orcid.org/0000-0001-5406-3902
https://orcid.org/0000-0003-2108-0700
metadata.dc.contributor.affiliation: TU Dresden, Institute of Computer Engineering
University of Brasilia, Department of Mechanical Engineering
Scuola Superiore Sant’Anna, BioRobotics Institute
University of Brasilia, Department of Mechanical Engineering, Electronics Engineering Undergraduate Program
Pontifical Catholic University of Paraná, Department of Mechanical Engineering
Scuola Superiore Sant’Anna, BioRobotics Institute
Assunto:: Prótese
Aprendizado de máquina
Reconfiguração dinâmica parcial
Interface miocinética
Field Programmable Gate Arrays (FPGAs)
Date de publication: 19-sep-2024
Editeur: IEEE
Référence bibliographique: MENDES, Sergio Andres Pertuz et al. Dynamic reconfiguration for multi-magnet tracking in myokinetic prosthetic interfaces. IEEE transactions on medical robotics and bionics, v. 6, n. 4, p. 1678-1687, 2024. DOI: 10.1109/TMRB.2024.3464093. Disponível em: https://ieeexplore.ieee.org/document/10684318. Acesso em: 25 ago. 2025.
Abstract: Recently myokinetic interfaces have been proposed to exploit magnet tracking for controlling bionic prostheses. This interface derives information about muscle contractions from permanent magnets implanted into the amputee’s forearm muscles. Machine learning models have been mapped on Field Programmable Gate Arrays (FPGAs) to track a single magnet, achieving good precision and computational efficiency, but consuming a large area and hardware resources. To track several magnets, here we propose a novel solution based on dynamic partial reconfiguration, switching three prediction models: a linear regressor, a radial basis function neural network, and a multi-layer perceptron neural network. A system with five magnets and 128 magnetic sensor inputs was used and experimental data were collected to train a system with five hardware predictors. To reduce the complexity of the models, we applied principal component analysis, ranking by correlation the number of inputs of each model. This run-time reconfigurable solution allows the circuits to be reconfigured in order to select the most reliable predictor model for each magnet while the rest of the circuit continues to operate extracting the most significant information from the captured signals. Thus, the proposed solution remarkably reduces the hardware occupation and improves the computational efficiency compared to previous solutions.
metadata.dc.description.unidade: Faculdade de Tecnologia (FT)
Departamento de Engenharia Mecânica (FT ENM)
metadata.dc.description.ppg: Programa de Pós-Graduação em Sistemas Mecatrônicos
DOI: 10.1109/TMRB.2024.3464093
metadata.dc.relation.publisherversion: https://ieeexplore.ieee.org/document/10684318
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/handle/10482/52528/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.