Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/52528
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMendez, Sergio Andres Pertuz-
dc.contributor.authorMendes, Davi de Alencar-
dc.contributor.authorGherardini, Marta-
dc.contributor.authorArboleda, Daniel Marinho Muñoz-
dc.contributor.authorAyala, Helon Vicente Hultmann-
dc.contributor.authorCipriani, Christian-
dc.date.accessioned2025-09-26T14:44:59Z-
dc.date.available2025-09-26T14:44:59Z-
dc.date.issued2024-09-19-
dc.identifier.citationMENDES, Sergio Andres Pertuz et al. Dynamic reconfiguration for multi-magnet tracking in myokinetic prosthetic interfaces. IEEE transactions on medical robotics and bionics, v. 6, n. 4, p. 1678-1687, 2024. DOI: 10.1109/TMRB.2024.3464093. Disponível em: https://ieeexplore.ieee.org/document/10684318. Acesso em: 25 ago. 2025.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/52528-
dc.language.isoengpt_BR
dc.publisherIEEEpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleDynamic reconfiguration for multi-magnet tracking in myokinetic prosthetic interfacespt_BR
dc.typeArtigopt_BR
dc.subject.keywordPrótesept_BR
dc.subject.keywordAprendizado de máquinapt_BR
dc.subject.keywordReconfiguração dinâmica parcialpt_BR
dc.subject.keywordInterface miocinéticapt_BR
dc.subject.keywordField Programmable Gate Arrays (FPGAs)pt_BR
dc.identifier.doi10.1109/TMRB.2024.3464093pt_BR
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10684318pt_BR
dc.description.abstract1Recently myokinetic interfaces have been proposed to exploit magnet tracking for controlling bionic prostheses. This interface derives information about muscle contractions from permanent magnets implanted into the amputee’s forearm muscles. Machine learning models have been mapped on Field Programmable Gate Arrays (FPGAs) to track a single magnet, achieving good precision and computational efficiency, but consuming a large area and hardware resources. To track several magnets, here we propose a novel solution based on dynamic partial reconfiguration, switching three prediction models: a linear regressor, a radial basis function neural network, and a multi-layer perceptron neural network. A system with five magnets and 128 magnetic sensor inputs was used and experimental data were collected to train a system with five hardware predictors. To reduce the complexity of the models, we applied principal component analysis, ranking by correlation the number of inputs of each model. This run-time reconfigurable solution allows the circuits to be reconfigured in order to select the most reliable predictor model for each magnet while the rest of the circuit continues to operate extracting the most significant information from the captured signals. Thus, the proposed solution remarkably reduces the hardware occupation and improves the computational efficiency compared to previous solutions.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-6311-3251pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-2156-5516pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-9219-6463pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-5406-3902pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-2108-0700pt_BR
dc.contributor.affiliationTU Dresden, Institute of Computer Engineeringpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Mechanical Engineeringpt_BR
dc.contributor.affiliationScuola Superiore Sant’Anna, BioRobotics Institutept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Mechanical Engineering, Electronics Engineering Undergraduate Programpt_BR
dc.contributor.affiliationPontifical Catholic University of Paraná, Department of Mechanical Engineeringpt_BR
dc.contributor.affiliationScuola Superiore Sant’Anna, BioRobotics Institutept_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Mecânica (FT ENM)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Sistemas Mecatrônicospt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.