Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/52466
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Multi-layerFeatureFusion.pdf2,77 MBAdobe PDFVisualizar/Abrir
Título: A multi-layer feature fusion method for few-shot image classification
Autor(es): Gomes, Jacó Cirino
Borges, Lurdineide de Araújo Barbosa
Borges, Díbio Leandro
ORCID: https://orcid.org/0000-0003-4810-5138
https://orcid.org/0000-0001-9284-3299
https://orcid.org/0000-0002-4868-0629
Afiliação do autor: University of Brasília, Department of Mechanical Engineering
Embrapa Cerrados
University of Brasília, Department of Computer Science
Assunto: Rede Neurais Convolucionais (CNNs)
Classificação de imagens
Multiescala
Aprendizagem métrica
Data de publicação: 3-Ago-2023
Editora: MDPI
Referência: GOMES, Jacó Cirino; BORGES, Lurdineide de Araújo Barbosa; BORGES, Díbio Leandro. A multi-layer feature fusion method for few-shot image classification. Sensors, Basel, v. 23, n. 15, 2023. DOI: https://doi.org/10.3390/s23156880. Disponível em: https://www.mdpi.com/1424-8220/23/15/6880. Acesso em: 03 jul. 2025.
Abstract: In image classification, few-shot learning deals with recognizing visual categories from a few tagged examples. The degree of expressiveness of the encoded features in this scenario is a crucial question that needs to be addressed in the models being trained. Recent approaches have achieved encouraging results in improving few-shot models in deep learning, but designing a competitive and simple architecture is challenging, especially considering its requirement in many practical applications. This work proposes an improved few-shot model based on a multi-layer feature fusion (FMLF) method. The presented approach includes extended feature extraction and fusion mechanisms in the Convolutional Neural Network (CNN) backbone, as well as an effective metric to compute the divergences in the end. In order to evaluate the proposed method, a challenging visual classification problem, maize crop insect classification with specific pests and beneficial categories, is addressed, serving both as a test of our model and as a means to propose a novel dataset. Experiments were carried out to compare the results with ResNet50, VGG16, and MobileNetv2, used as feature extraction backbones, and the FMLF method demonstrated higher accuracy with fewer parameters. The proposed FMLF method improved accuracy scores by up to 3.62% in one-shot and 2.82% in fiveshot classification tasks compared to a traditional backbone, which uses only global image features.
Unidade Acadêmica: Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
Programa de pós-graduação: Programa de Pós-Graduação em Sistemas Mecatrônicos
Licença: (CC BY) © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
DOI: https://doi.org/10.3390/s23156880
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.