Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/52466
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Multi-layerFeatureFusion.pdf2,77 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorGomes, Jacó Cirino-
dc.contributor.authorBorges, Lurdineide de Araújo Barbosa-
dc.contributor.authorBorges, Díbio Leandro-
dc.date.accessioned2025-09-19T10:18:18Z-
dc.date.available2025-09-19T10:18:18Z-
dc.date.issued2023-08-03-
dc.identifier.citationGOMES, Jacó Cirino; BORGES, Lurdineide de Araújo Barbosa; BORGES, Díbio Leandro. A multi-layer feature fusion method for few-shot image classification. Sensors, Basel, v. 23, n. 15, 2023. DOI: https://doi.org/10.3390/s23156880. Disponível em: https://www.mdpi.com/1424-8220/23/15/6880. Acesso em: 03 jul. 2025.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/52466-
dc.language.isoengpt_BR
dc.publisherMDPIpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleA multi-layer feature fusion method for few-shot image classificationpt_BR
dc.typeArtigopt_BR
dc.subject.keywordRede Neurais Convolucionais (CNNs)pt_BR
dc.subject.keywordClassificação de imagenspt_BR
dc.subject.keywordMultiescalapt_BR
dc.subject.keywordAprendizagem métricapt_BR
dc.rights.license(CC BY) © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.3390/s23156880pt_BR
dc.description.abstract1In image classification, few-shot learning deals with recognizing visual categories from a few tagged examples. The degree of expressiveness of the encoded features in this scenario is a crucial question that needs to be addressed in the models being trained. Recent approaches have achieved encouraging results in improving few-shot models in deep learning, but designing a competitive and simple architecture is challenging, especially considering its requirement in many practical applications. This work proposes an improved few-shot model based on a multi-layer feature fusion (FMLF) method. The presented approach includes extended feature extraction and fusion mechanisms in the Convolutional Neural Network (CNN) backbone, as well as an effective metric to compute the divergences in the end. In order to evaluate the proposed method, a challenging visual classification problem, maize crop insect classification with specific pests and beneficial categories, is addressed, serving both as a test of our model and as a means to propose a novel dataset. Experiments were carried out to compare the results with ResNet50, VGG16, and MobileNetv2, used as feature extraction backbones, and the FMLF method demonstrated higher accuracy with fewer parameters. The proposed FMLF method improved accuracy scores by up to 3.62% in one-shot and 2.82% in fiveshot classification tasks compared to a traditional backbone, which uses only global image features.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-4810-5138pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-9284-3299pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-4868-0629pt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Mechanical Engineeringpt_BR
dc.contributor.affiliationEmbrapa Cerradospt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Computer Sciencept_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Sistemas Mecatrônicospt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.