http://repositorio.unb.br/handle/10482/52457
Título: | Pro-p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation |
Autor(es): | Chatzidakis, Zoé Zalesski, Pavel |
ORCID: | https://orcid.org/0000-0002-3369-100X https://orcid.org/0000-0002-2015-239X |
Afiliação do autor: | Ecole Normale Supérieure, Département de Mathématiques et Applications University of Brasilia, Department of Mathematics |
Assunto: | Grupos pro-p Grupos-p finitos |
Data de publicação: | 6-Mar-2022 |
Editora: | Magnes Press |
Referência: | CHATZIDAKIS, Zoé; ZALESSKI, Pavel. Pro-p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation. Israel Journal of Mathematics, Jerusalem, v. 247, p. 593-634, 2022. DOI: https://doi.org/10.1007/s11856-022-2287-5. Disponível em: https://link.springer.com/article/10.1007/s11856-022-2287-5. Acesso em: 13 jun. 2025. |
Abstract: | We prove that a finitely generated pro-p group G acting on a pro-p tree T splits as a free amalgamated pro-p product or a pro-p HNN-extension over an edge stabilizer. If G acts with finitely many vertex stabilizers up to conjugation, we show that it is the fundamental pro-p group of a finite graph of pro-p groups (G, Γ) with edge and vertex groups being stabilizers of certain vertices and edges of T respectively. If edge stabilizers are procyclic, we give a bound on Γ in terms of the minimal number of generators of G. We also give a criterion for a pro-p group G to be accessible in terms of the first cohomology H1(G, Fp[[G]]). |
Unidade Acadêmica: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
Programa de pós-graduação: | Programa de Pós-Graduação em Matemática |
DOI: | https://doi.org/10.1007/s11856-022-2287-5 |
Versão da editora: | https://link.springer.com/article/10.1007/s11856-022-2287-5 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.