http://repositorio.unb.br/handle/10482/52457
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Chatzidakis, Zoé | - |
dc.contributor.author | Zalesski, Pavel | - |
dc.date.accessioned | 2025-09-18T10:56:08Z | - |
dc.date.available | 2025-09-18T10:56:08Z | - |
dc.date.issued | 2022-03-06 | - |
dc.identifier.citation | CHATZIDAKIS, Zoé; ZALESSKI, Pavel. Pro-p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation. Israel Journal of Mathematics, Jerusalem, v. 247, p. 593-634, 2022. DOI: https://doi.org/10.1007/s11856-022-2287-5. Disponível em: https://link.springer.com/article/10.1007/s11856-022-2287-5. Acesso em: 13 jun. 2025. | pt_BR |
dc.identifier.uri | http://repositorio.unb.br/handle/10482/52457 | - |
dc.language.iso | eng | pt_BR |
dc.publisher | Magnes Press | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Pro-p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Grupos pro-p | pt_BR |
dc.subject.keyword | Grupos-p finitos | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s11856-022-2287-5 | pt_BR |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11856-022-2287-5 | pt_BR |
dc.description.abstract1 | We prove that a finitely generated pro-p group G acting on a pro-p tree T splits as a free amalgamated pro-p product or a pro-p HNN-extension over an edge stabilizer. If G acts with finitely many vertex stabilizers up to conjugation, we show that it is the fundamental pro-p group of a finite graph of pro-p groups (G, Γ) with edge and vertex groups being stabilizers of certain vertices and edges of T respectively. If edge stabilizers are procyclic, we give a bound on Γ in terms of the minimal number of generators of G. We also give a criterion for a pro-p group G to be accessible in terms of the first cohomology H1(G, Fp[[G]]). | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-3369-100X | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-2015-239X | pt_BR |
dc.contributor.affiliation | Ecole Normale Supérieure, Département de Mathématiques et Applications | pt_BR |
dc.contributor.affiliation | University of Brasilia, Department of Mathematics | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Matemática (IE MAT) | pt_BR |
dc.description.ppg | Programa de Pós-Graduação em Matemática | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.