http://repositorio.unb.br/handle/10482/45317
File | Description | Size | Format | |
---|---|---|---|---|
2022_AndréLuizBandeiraMolina.pdf | 2,49 MB | Adobe PDF | View/Open |
Title: | WEAPON : uma arquitetura de aprendizado não supervisionado para detecção de anomalias de comportamento de usuários |
Authors: | Molina, André Luiz Bandeira |
metadata.dc.contributor.email: | molina.albmolina@gmail.com |
Orientador(es):: | Rocha Filho, Geraldo Pereira |
Coorientador(es):: | Gonçalves, Vinícius Pereira |
Assunto:: | Comportamento de usuários - anomalias Detecção de anomalias Segurança cibernética Autoencoder |
Issue Date: | 16-Dec-2022 |
Data de defesa:: | 15-Sep-2022 |
Citation: | MOLINA, André Luiz Bandeira. WEAPON: uma arquitetura de aprendizado não supervisionado para detecção de anomalias de comportamento de usuários. 2022. xii, 107 f., il. Dissertação (Mestrado em Engenharia Elétrica) — Universidade de Brasília, Brasília, 2022. |
Abstract: | Nos últimos anos, a detecção de anomalias de comportamento do usuário tem conquistado a atenção em segurança cibernética. Um dos desafios cruciais que têm sido pesquisados na literatura é que modelos supervisionados que utilizam grandes quantidades de dados para treinamento não se aplicam a cenários reais de detecção de anomalias. Em contrapartida, modelos não supervisionados tendem a apresentar problemas de escalabilidade com relação ao número de usuários do dataset, uma vez que abordam os aspectos comportamentais de forma individual para cada usuário. Dentro deste contexto, a necessidade de obter datasets rotulados com anomalias de comportamento provou ser um fator limitante para avaliar diferentes modelos, e esta limitação é explorada nesta pesquisa. Este trabalho apresenta uma arquitetura para a detecção de anomalias de comportamento de usuários baseada Wide and Deep Convolutional LSTM Autoencoders – WEAPON. O WEAPON utiliza aprendizado não supervisionado e requer uma pequena quantidade de dados para construir perfis de comportamento considerando a individualidade de cada usuário. Além disso, o WEAPON implementa uma abordagem de supervisão fraca para rotulação de anomalias de comportamento a partir do Snorkel. Quando comparado com outras abordagens, o WEAPON provou ser mais eficiente superando o segundo melhor modelo em mais de 4% na curva ROC. Além disso, WEAPON supera os métodos baseados em regras ao encontrar anomalias que um especialista não anteciparia. |
Abstract: | In recent years, user behavior anomaly detection has been gaining attention in cybersecurity. A crucial challenge that has been discussed in the literature is that supervised models that use vast amounts of data for training do not apply to real scenarios for anomaly detection. In contrast, unsupervised models tend to face scalability problems with respect to the number of users in the dataset, since they address behavioral aspects on an individual basis for each user. Within this context, the requirement to gather datasets with labeled behavior anomalies has proven to be a significant limiting factor for evaluating different models, and this limitation is explored in this research. This work presents an architecture for user behavior anomaly detection based on Wide and Deep Convolutional LSTM Autoencoders – WEAPON. WEAPON uses unsupervised learning and requires a small amount of data to build behavior profiles considering the individuality of each user. Furthermore, WEAPON implements weak supervision-based behavior anomaly labeling approach using Snorkel. When compared to other approaches, WEAPON proved to be more efficient, surpassing the ROC curve of the second best model by more than 4%. Furthermore, WEAPON outperforms rule-based methods by finding anomalies that an expert would not anticipate. |
metadata.dc.description.unidade: | Faculdade de Tecnologia (FT) Departamento de Engenharia Elétrica (FT ENE) |
Description: | Dissertação (mestrado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2022. |
metadata.dc.description.ppg: | Programa de Pós-Graduação em Engenharia Elétrica, Mestrado Profissional |
Appears in Collections: | Teses, dissertações e produtos pós-doutorado |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.