Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/42478
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ARTIGO_NovelSpatialDownscaling.pdf1,85 MBAdobe PDFVoir/Ouvrir
Titre: A novel spatial downscaling approach for climate change assessment in regions with sparse ground data networks
Auteur(s): Kim, Yong-Tak
Kwon, Hyun-Han
Lima, Carlos Henrique Ribeiro
Sharma, Ashish
Assunto:: Mudanças climáticas
Krigagem
Date de publication: 6-nov-2021
Editeur: Wiley
Référence bibliographique: KIM, Yong-Tak et al. A novel spatial downscaling approach for climate change assessment in regions with sparse ground data networks. Geophysical Research Letters, v. 48, n. 22, e2021GL095729, 2021. DOI: https://doi.org/10.1029/2021GL095729.
Abstract: This study proposes a novel approach that expands the existing QDM (quantile delta mapping) to address spatial bias, using Kriging within a Bayesian framework to assess the impact of using a point reference field. Our focus here is to spatially downscale daily rainfall sequences simulated by regional climate models (RCMs), coupled to the proposed QDM-spatial bias-correction, in which the distribution parameters are first interpolated onto a fine grid (rather than the observed daily rainfall). The proposed model is validated through a cross-validatory (CV) evaluation using rainfall data from a set of weather stations in South Korea and climate change scenarios simulated by three alternate RCMs. The results demonstrate the efficacy of the proposed model to simulate the bias-corrected daily rainfall sequences over large regions at fine resolutions. A discussion of the potential use of the proposed approach in the field of hydrometeorology is also offered.
Licença:: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
DOI: https://doi.org/10.1029/2021GL095729
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/42478/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.