Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/42478
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_NovelSpatialDownscaling.pdf1,85 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorKim, Yong-Tak-
dc.contributor.authorKwon, Hyun-Han-
dc.contributor.authorLima, Carlos Henrique Ribeiro-
dc.contributor.authorSharma, Ashish-
dc.date.accessioned2021-11-30T00:46:41Z-
dc.date.available2021-11-30T00:46:41Z-
dc.date.issued2021-11-06-
dc.identifier.citationKIM, Yong-Tak et al. A novel spatial downscaling approach for climate change assessment in regions with sparse ground data networks. Geophysical Research Letters, v. 48, n. 22, e2021GL095729, 2021. DOI: https://doi.org/10.1029/2021GL095729.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/42478-
dc.language.isoInglêspt_BR
dc.publisherWileypt_BR
dc.rightsAcesso Abertopt_BR
dc.titleA novel spatial downscaling approach for climate change assessment in regions with sparse ground data networkspt_BR
dc.typeArtigopt_BR
dc.subject.keywordMudanças climáticaspt_BR
dc.subject.keywordKrigagempt_BR
dc.rights.licenseThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.pt_BR
dc.identifier.doihttps://doi.org/10.1029/2021GL095729pt_BR
dc.description.abstract1This study proposes a novel approach that expands the existing QDM (quantile delta mapping) to address spatial bias, using Kriging within a Bayesian framework to assess the impact of using a point reference field. Our focus here is to spatially downscale daily rainfall sequences simulated by regional climate models (RCMs), coupled to the proposed QDM-spatial bias-correction, in which the distribution parameters are first interpolated onto a fine grid (rather than the observed daily rainfall). The proposed model is validated through a cross-validatory (CV) evaluation using rainfall data from a set of weather stations in South Korea and climate change scenarios simulated by three alternate RCMs. The results demonstrate the efficacy of the proposed model to simulate the bias-corrected daily rainfall sequences over large regions at fine resolutions. A discussion of the potential use of the proposed approach in the field of hydrometeorology is also offered.pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.