http://repositorio.unb.br/handle/10482/42350
Titre: | Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles |
Auteur(s): | Nunes, Ricardo Ferreira Cunha Filho, Marcílio Sérgio Soares da Gratieri, Taís Gelfuso, Guilherme Martins |
Assunto:: | Acne Alopecia Folículo capilar Copolímero de ácido metacrílico / metacrilato de metila Poli-ε-caprolactona |
Date de publication: | 2021 |
Editeur: | Elsevier B.V. |
Référence bibliographique: | NUNES, Ricardo Ferreira et al. Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles. Colloids and Surfaces B: Biointerfaces, v. 208, 112101, 2021. DOI: https://doi.org/10.1016/j.colsurfb.2021.112101. |
Abstract: | This study proposes developing a topical formulation based on poly-ε-caprolactone (PCL) or methacrylic acid/methyl methacrylate copolymer (EL100) nanoparticles to enable a safer and more effective therapy of alopecia and acne with spironolactone. The effect of the size of the nanoparticle on follicular-targeted drug delivery is also verified. Compatibility studies based on thermal analyses and complementary techniques showed a small interaction of the drug with excipients, which may not compromise the drug stability. PCL nanoparticles of 180.0 ± 1.6 and 126.8 ± 1.0 nm, and EL100 nanoparticles of 102.7 ± 7.1 nm were then prepared. All nanoparticles entrapped more than 75 % of spironolactone, were physically stable, and stabilized the drug for at least 90 days. They were also non-irritant according to HET-CAM tests. Drug release from the nanoparticles was reduced in aqueous buffer media but fast when in contact with oil. Finally, in vitro skin penetration experiments revealed the largest nanoparticles (of 180 nm) targeted drug delivery to the hair follicles 5-fold (p < 0.05) more than the control solution, 2.1-fold (p < 0.05) more than nanoparticles produced with the same polymer (PCL) but with smaller size (123 nm), and 4.9-fold (p < 0.05) more than the 102-nm E100 nanoparticles. In conclusion, follicular targeting can be adjusted according to nanoparticle size, and this work succeeded in obtaining polymeric nanoparticles adequate to enable topical treatment of acne and alopecia with spironolactone. |
DOI: | https://doi.org/10.1016/j.colsurfb.2021.112101 |
metadata.dc.relation.publisherversion: | https://www.sciencedirect.com/science/article/abs/pii/S0927776521005452?via%3Dihub |
Collection(s) : | Artigos publicados em periódicos e afins |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.