Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/41187
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium
Auteur(s): Fernandes, Juliana
Maia, Liliane de Almeida
Assunto:: Equação parabólica
Explosão em tempo infinito
Variedade de Nehari
Date de publication: aoû-2020
Editeur: American Institute of Mathematical Sciences
Référence bibliographique: FERNANDES, Juliana; MAIA, Liliane. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems, v. 41, n. 3, p. 1297-1318, mar. 2021. DOI: 10.3934/dcds.2020318.
Abstract: The present paper is on the existence and behaviour of solutions for a class of semilinear parabolic equations, defined on a bounded smooth domain and assuming a nonlinearity asymptotically linear at infinity. The behavior of the solutions when the initial data varies in the phase space is analyzed. Global solutions are obtained, which may be bounded or blow-up in infinite time (grow-up). The main tools are the comparison principle and variational methods. In particular, the Nehari manifold is used to separate the phase space into regions of initial data where uniform boundedness or grow-up behavior of the semiflow may occur. Additionally, some attention is paid to initial data at high energy level.
DOI: 10.3934/dcds.2020318
metadata.dc.relation.publisherversion: https://www.aimsciences.org/article/doi/10.3934/dcds.2020318
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/41187/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.