Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/41187
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium
Autor : Fernandes, Juliana
Maia, Liliane de Almeida
Assunto:: Equação parabólica
Explosão em tempo infinito
Variedade de Nehari
Fecha de publicación : ago-2020
Editorial : American Institute of Mathematical Sciences
Citación : FERNANDES, Juliana; MAIA, Liliane. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems, v. 41, n. 3, p. 1297-1318, mar. 2021. DOI: 10.3934/dcds.2020318.
Abstract: The present paper is on the existence and behaviour of solutions for a class of semilinear parabolic equations, defined on a bounded smooth domain and assuming a nonlinearity asymptotically linear at infinity. The behavior of the solutions when the initial data varies in the phase space is analyzed. Global solutions are obtained, which may be bounded or blow-up in infinite time (grow-up). The main tools are the comparison principle and variational methods. In particular, the Nehari manifold is used to separate the phase space into regions of initial data where uniform boundedness or grow-up behavior of the semiflow may occur. Additionally, some attention is paid to initial data at high energy level.
DOI: 10.3934/dcds.2020318
metadata.dc.relation.publisherversion: https://www.aimsciences.org/article/doi/10.3934/dcds.2020318
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/41187/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.