Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/34221
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ARTIGO_Gawryszewski_2018_Ecology_and_Evolution__2_.pdf781,38 kBAdobe PDFVisualizar/Abrir
Título : Color vision models : some simulations, a general n-dimensional model, and the colourvision R package
Autor : Gawryszewski, Felipe Malheiros
metadata.dc.identifier.orcid: http://orcid.org/0000-0002-3072-5518
Assunto:: Cromoticidade
Fotoreceptores
Modelo de visão de cores
Fecha de publicación : ago-2018
Editorial : John Wiley & Sons Ltd.
Citación : GAWRYSZEWSKI, Felipe M. Color vision models: some simulations, a general n-dimensional model, and the colourvision R package. Ecology and Evolution, v. 8, issued 16, 8159-8170, 2018. DOI: 10.1002/ece3.4288. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4288.
Abstract: The development of color vision models has allowed the appraisal of color vision independent of the human experience. These models are now widely used in ecology and evolution studies. However, in common scenarios of color measurement, color vision models may generate spurious results. Here I present a guide to color vision modeling (Chittka (1992, Journal of Comparative Physiology A, 170, 545) color hexagon, Endler & Mielke (2005, Journal Of The Linnean Society, 86, 405) model, and the linear and log-linear receptor noise limited models (Vorobyev & Osorio 1998, Proceedings of the Royal Society B, 265, 351; Vorobyev et al. 1998, Journal of Comparative Physiology A, 183, 621)) using a series of simulations, present a unified framework that extends and generalize current models, and provide an R package to facilitate the use of color vision models. When the specific requirements of each model are met, between-model results are qualitatively and quantitatively similar. However, under many common scenarios of color measurements, models may generate spurious values. For instance, models that log-transform data and use relative photoreceptor outputs are prone to generate spurious outputs when the stimulus photon catch is smaller than the background photon catch; and models may generate unrealistic predictions when the background is chromatic (e.g. leaf reflectance) and the stimulus is an achromatic low reflectance spectrum. Nonetheless, despite differences, all three models are founded on a similar set of assumptions. Based on that, I provide a new formulation that accommodates and extends models to any number of photoreceptor types, offers flexibility to build user-defined models, and allows users to easily adjust chromaticity diagram sizes to account for changes when using different number of photoreceptors.
Licença:: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
DOI: https://dx.doi.org/10.1002/ece3.4288
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/34221/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.