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1  | INTRODUC TION

The study of proximate and ultimate causes of animal coloration 
has played a significant role in our understanding of evolutionary 

processes (for a review on the study of coloration see Cuthill et al., 
2017). To study the selective forces acting on an organism coloration, 
it is crucial to understand how color patches are perceived by po-
tential selective agents (e.g. a predator; Endler, 1990). Furthermore, 

 

Received: 19 January 2018  |  Revised: 23 April 2018  |  Accepted: 19 May 2018
DOI: 10.1002/ece3.4288

O R I G I N A L  R E S E A R C H

Color vision models: Some simulations, a general n-dimensional 
model, and the colourvision R package

Felipe M. Gawryszewski

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Departamento de Zoologia, Instituto de 
Ciências Biológicas, Universidade de Brasília, 
Brasília, Brazil

Correspondence
Departamento de Zoologia, Instituto de 
Ciências Biológicas, Universidade de Brasília, 
Brasília, Brazil.
Email: f.gawry@gmail.com

Abstract
The development of color vision models has allowed the appraisal of color vision in-
dependent of the human experience. These models are now widely used in ecology 
and evolution studies. However, in common scenarios of color measurement, color 
vision models may generate spurious results. Here I present a guide to color vision 
modeling (Chittka (1992, Journal of Comparative Physiology A, 170, 545) color hexa-
gon, Endler & Mielke (2005, Journal Of The Linnean Society, 86, 405) model, and the 
linear and log-linear receptor noise limited models (Vorobyev & Osorio 1998, 
Proceedings of the Royal Society B, 265, 351; Vorobyev et al. 1998, Journal of 
Comparative Physiology A, 183, 621)) using a series of simulations, present a unified 
framework that extends and generalize current models, and provide an R package to 
facilitate the use of color vision models. When the specific requirements of each 
model are met, between-model results are qualitatively and quantitatively similar. 
However, under many common scenarios of color measurements, models may gener-
ate spurious values. For instance, models that log-transform data and use relative 
photoreceptor outputs are prone to generate spurious outputs when the stimulus 
photon catch is smaller than the background photon catch; and models may generate 
unrealistic predictions when the background is chromatic (e.g. leaf reflectance) and 
the stimulus is an achromatic low reflectance spectrum. Nonetheless, despite differ-
ences, all three models are founded on a similar set of assumptions. Based on that, I 
provide a new formulation that accommodates and extends models to any number of 
photoreceptor types, offers flexibility to build user-defined models, and allows users 
to easily adjust chromaticity diagram sizes to account for changes when using differ-
ent number of photoreceptors.
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animal vision may also evolve in response to environmental condi-
tions, as is suggested by the correlation between light conditions and 
peak wavelength sensitivities of marine mammal photoreceptors 
(Fasick & Robinson, 2000).

There are several axes of variation in animal vision, such as 
density and distribution of receptors in the retina (Hart, 2001), eye 
resolution (Land & Nilsson, 2012), and presence of oil-droplets in 
photoreceptors cells (Hart, Partridge, Bennett, & Cuthill, 2000). 
In terms of color vision, the most obvious differences are found in 
the spectral sensitivity of photoreceptors cells (Kelber, Vorobyev, & 
Osorio, 2003; Osorio & Vorobyev, 2008). For instance, most non-
mammal vertebrates are tetrachromats, most insects are trichro-
mats, and, contrary to mammals, both have a color perception that 
spans into the ultraviolet (Bowmaker, 1998; Briscoe & Chittka, 2001; 
Kelber et al., 2003; Osorio & Vorobyev, 2008). A fascinating illus-
tration of how photoreceptor sensitivity may affect perceptual dif-
ferences comes from human subjects that have undergone cataract 
treatment. The sensitivity curve of the human blue photoreceptor 
spans into the ultraviolet (UV) range, but humans are UV-insensitive 
because pigments in crystallin filter out wavelengths below 400 nm. 
Cataract surgery occasionally replaces the crystallin with a UV-
transmitting lens, and anecdotal evidence suggests that those in-
dividuals are then able to see the world differently: new patterns 
are observed in flower petals, some garments originally perceived 
as black appear purple, and black light is perceived as blue light 
(Cornell, 2011; Stark & Tan, 1982).

Thus, studies of animal coloration can clearly benefit from ap-
praisals of how color patches are perceived by nonhuman observ-
ers. Moreover, the same color patch may be perceived differently 
depending not only on the observer, but also on the conditions of 
exposure of the color patch (e.g. background color and environmen-
tal light conditions; Endler, 1990). With the advent of affordable 
spectrometers for reflectance measurements, application of color 
vision models became commonplace in the ecology and evolution 
subfields (Kemp et al., 2015). Together, some of the most important 
color vision papers have been cited over 2,800 times (Endler, 1990 
(919); Vorobyev & Osorio, 1998 (601), Vorobyev, Osorio, Bennett, 
Marshall, & Cuthill, 1998 (460); Chittka, 1992 (324); Chittka, Beier, 
Hertel, Steinmann, & Menzel, 1992 (128); Endler & Mielke, 2005 
(445); Google Scholar search on October 31st 2016).

Knowledge of model strength and limitations is crucial to as-
sure reproducible and meaningful results from model applications. 
Thus, the motivation of this study is twofold: firstly, to compare 
and illustrate the consistency of between-model results in com-
mon scenarios of color measurements; and secondly, to facilitate 
the use of color vision models by evolutionary biologists and ecolo-
gists by giving a unified framework which extends and generalizes 
the most commonly used color vision models. I did not aim to give 
an in-depth analysis of the physiology of color vision, but rather, 
to provide a practical guide to the use of color vision models and 
to demonstrate their limitations and strengths so that users avoid 
the common pitfalls of color vision modeling. Guidance on other 
aspects of color vision models can be found elsewhere (Bitton, 

Janisse, & Doucet, 2017; Endler & Mielke, 2005; Hempel de Ibarra, 
Vorobyev, & Menzel, 2014; Kelber et al., 2003; Kemp et al., 2015; 
Lind & Kelber, 2009; Olsson, Lind, & Kelber, 2017a,b; Osorio & 
Vorobyev, 2008; Renoult, Kelber, & Schaefer, 2017; Vorobyev, 
Osorio, Peitsch, Laughlin, & Menzel, 2001; White, Dalrymple, 
Noble, & O’Hanlon, 2015).

2  | GUIDELINES AND LIMITATIONS

As any model, color vision models are simplified representations of 
reality. Their mathematical formulation imposes limits to their pre-
dictive power. Many of these limitations have been pointed out by 
several authors (Bitton et al., 2017; Lind & Kelber, 2009; Vorobyev, 
1999; Vorobyev & Brandt, 1997; Vorobyev, Hempel de Ibarra, 
Brandt, & Giurfa, 1999). Nonetheless, as stressed recently, several 
papers in the evolution and ecology subfields still misuse color vision 
models (Marshall, 2017; Olsson et al., 2017b). Some of these limita-
tions may be obvious to scientists working directly on color vision, 
but are not by many nonspecialists that apply color vision models to 
their research. In this section, I compile and illustrate those limita-
tions by a series of simulations. My focus is on the limitations arising 
from the mathematical formulation of each model, which are often 
obscure to many nonspecialists in the field.

I modeled the perception of the honeybee (Apis mellifera) using 
the following color vision models: Chittka (1992) color hexagon 
model (hereafter CH model), Endler and Mielke (2005) model (here-
after EM model), and linear and log-linear versions of the receptor 
noise model (hereafter linear-RNL and log-RNL models (Vorobyev 
et al., 1998; Vorobyev & Osorio, 1998). I began with a basic model 
setup using simulated data. I then proceeded to make a series of 
changes to this basic model to illustrate how models behave with 
typical input data used in ecology and evolution papers. At the end, 
I used real flower reflectance data to compare model results. I vio-
lated some model assumptions, for example, I applied the linear-RNL 
model to nonsimilar colors, so that model behaviour could be visual-
ized under suboptimum conditions.

Human color perception can be divided into two components: 
the chromatic (hue and saturation) and achromatic (brightness/
intensity) dimensions. These models are representations of the 
chromatic component of color vision (Renoult et al., 2017). Color 
vision models are based on photoreceptor photon catches of each 
photoreceptor type in the retina. Photon catches depend on the 
illuminant spectrum reaching the observed object, the reflec-
tance of the observed object, the sensitivity curve of photorecep-
tors, and the background reflectance (for details see Supporting 
Information Appendix S1).

These models assume that color vision is achieved by neural op-
ponency mechanisms, which is supported by experimental data (Kelber 
et al., 2003; Kemp et al., 2015, but see Thoen, How, Chiou, & Marshall, 
2014 for an exception to this rule). The exact opponent channels are 
usually not known (Kelber et al., 2003; Kemp et al., 2015), but empir-
ical studies suggest that the exact opponency channels do not need 
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to be known for a good prediction of behavioural responses by color 
vision models (Cazetta, Schaefer, & Galetti, 2009; Chittka et al., 1992; 
Spaethe, Tautz, & Chittka, 2001; Vorobyev & Osorio, 1998). Taking that 
into account, the three models presented here assume that inputs from 
photoreceptors are weighted equally and are all opposed against each 
other.

In addition, photoreceptor values are adjusted taking into consid-
eration the photon catch arising from the environment background 
(Supporting Information Appendix S1, Equation S3), which tries to 
emulate the physiological adaptation of photoreceptors to the envi-
ronmental light conditions and the color constancy (Chittka, Faruq, 
Skorupski, & Werner, 2014). Photon catches relative to the background 
are then transformed to represent the relationship between photore-
ceptor input and output. Each model will apply a different transforma-
tion (e.g. identity, ln, hyperbolic; for details see Supporting Information 
Appendix S1), but the rationale behind all these are the nonlinear rela-
tionship between photoreceptor input and output. However, only the 
EM (Endler & Mielke, 2005) and log-RNL models (Vorobyev et al., 1998) 
apply the natural logarithm as formulated by the Fechner-Weber law of 
psychophysics. The CH model applies a hyperbolic transformation that 
also simulates a nonlinear relationship between photoreceptor input 
and output, and the linear RNL models is to be applied only to simi-
lar colors so that the relationship is nearly linear (Vorobyev & Osorio, 
1998). Furthermore, EM model uses only relative photoreceptor out-
put values (sum of photoreceptor values equal 1), not their absolute 
values, which is based on the biological observation that only relative 
differences in photoreceptor outputs are used in a color opponency 
mechanisms (Endler & Mielke, 2005).

2.1 | First simulation: basic setup

I used honeybee worker (A. mellifera) photoreceptor sensitivity 
curves (data from Peitsch et al., 1992 available in Chittka & Kevan, 
2005; Supporting Information Figure S1a). For the background re-
flectance spectrum, I created a theoretical achromatic reflectance 
with a constant 7% reflectance across 300–700 nm (Supporting 
Information Figure S1b). For the illuminant, I used the CIE D65, a 
reference illuminant that corresponds to midday open-air condi-
tions (Supporting Information Figure S1c). In addition, RNL mod-
els assume that, under bright light conditions, color discrimination 
threshold is limited by photoreceptor noise (Vorobyev & Osorio, 
1998; for dim light conditions shot noise also limits discrimina-
tion; Vorobyev et al., 1998; see Olsson et al., 2017a for a recent 
review). For these models, I used measurements of honeybee 
photoreceptor noise (0.13, 0.06 and 0.12 for short-, medium-, and 
long-wavelength photoreceptors; data from Peitsch, 1992 avail-
able in Vorobyev & Brandt, 1997). With respect to the stimulus 
reflectance spectra, I generated reflectance curves using a logis-
tic function (see Supporting Information Appendix S1 for details). 
I generated curves with reflectance values from of 10% to 60%, 
and midpoints varying from 300 to 700 nm with 5 nm intervals, in 
a total of 81 reflectance spectra (Supporting Information Figure 
S1d). For each model, I calculated photoreceptor outputs, color 

loci (x and y), and the chromatic distance to the background (ΔS) 
for each reflectance spectra using equations for CH, EM, and RNL 
models (Equations S2–S19 see Supporting Information Appendix 
S1 for details on model calculations). To illustrate the generality of 
the results from these simulations, I ran the same simulations with 
a Gaussian function to generate the stimulus reflectance spectra, 
and for tetrachromatic avian vision (see Supporting Information 
Appendix S1 for methods and results; results are qualitatively very 
similar to the original simulations).

In this first setup, models are congruent with respect to their 
results. The chromaticity diagrams indicate a similar relative position 
of reflectance spectra between models (Figure 1). All of them esti-
mate a bell-shaped ΔS curve, with maximum values around a 500-
nm midpoint wavelength (Figure 1).

2.2 | Second simulation: stimulus reflectance lower 
than background reflectance

In the second simulation, I removed 10 percentage points to the 
stimulus reflectance spectra (Supporting Information Figure S2a). In 
this case, my aim was to (a) analyze how a relatively small change in 
reflectance curves affect model results, as small changes in overall 
reflectance values may be an artifact of spectrometric measurement 
error (for guidance on spectrometric reflectance measurements, see 
Anderson & Prager, 2006); and (b) to create reflectance spectra that 
would generate a lower photoreceptor response from stimulus than 
the background.

In this simulation, results projected into chromaticity diagrams 
show differences between model predictions of color perception for 
the same reflectance spectrum (Figure 2). Contrary to the first simu-
lation, in the EM model, points follow two lines increasing in opposite 
directions, with data points reaching values outside color space limits 
(Figure 2b). The EM model estimates spurious ΔS values for reflec-
tance curves with midpoints between 450 and 550 nm (Figure 2b). A 
maximum ΔS of 116 is reached at 490 nm midpoint wavelength; how-
ever, by the model definition, the ΔS maximum value is 0.75 (Endler & 
Mielke, 2005). Photoreceptor outputs also reach nonsensical negative 
values and values above 1 (by model definition, maximum photorecep-
tor output should vary between 0.0 and 1.0; Figure 2b). This happens 
when relative photon catches (qi; Equation S4, Supporting Information 
Appendix S1) are below 1 (i.e. background photon catch is higher than 
stimulus photon catch), and therefore, the ln-transformation gener-
ates negative values. Consequently, the denominator in Supporting 
Information Equation S9 may reach values close to zero, which causes 
photoreceptor outputs to tend to infinity.

Comparable to the EM model, the log-RNL model generates 
nonsensical negative photoreceptor excitation values (Figure 2d). 
Again, this happens because when the relative photoreceptor pho-
ton catch (qi; Equation S4, Supporting Information Appendix S1) is 
below 1, the ln-transformation generates negative values (Equation 
S15, Supporting Information Appendix S1). Consequently, this model 
now presents a sigmoid ΔS, increasing from short to long midpoint 
wavelengths (maximum ΔS at 700 nm; Figure 2d).
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Therefore, color vision models, especially those that are log-
transformed (EM model and log-RNL model) and convert photore-
ceptor output to relative values (EM model), are prone to produce 
nonsensical results when the observed reflectance generates a lower 
response than the background (Qi < QBi; Equation S4, Supporting 
Information Appendix S1).

The transformation of photoreceptor inputs also illustrates a 
common misconception related to the use of color vision models. 
Models are intended to be insensitive to variation in intensity only. 
Nonetheless, in practice, models are insensitive to variation in photo-
receptor outputs as long as the difference between outputs remains 
the same. However, this does not mean that reflectance spectra that 
only differ in intensity will generate identical model outputs. For in-
stance, a reflectance spectrum that generates photoreceptor out-
puts of E1 = 0.1, E2 = 0.2 and E3 = 0.3 will lie at the exact same color 
locus coordinates as another reflectance that generates photorecep-
tor outputs of E1 = 0.2, E2 = 0.3, and E3 = 0.4 because differences 

between photoreceptor outputs remain the same (i.e. E3 − E1 = 0.2; 
E2 − E1 = 0.1; and E3 − E2 = 0.1). Nonetheless, reflectance spectra 
that differ only in intensity (simulation 1 vs. simulation 2) will most 
likely generate distinct differences between photoreceptor outputs 
because of the photoreceptor transformation. Consequently, these 
spectra will lie at different positions in the animal color space (color 
locus coordinates; compare Figures 1 and 2). CH model, in special, 
predicts different color loci for reflectance curves that only differ in 
intensity due to the hyperbolic transformation (Chittka, 1992). There 
is a controversy whether this represents a biological phenomenon 
(Chittka, 1992, 1999) or it is a model limitation (Vorobyev et al., 1999).

2.3 | Third simulation: achromatic stimulus and 
chromatic background

In the basic model, I used an achromatic reflectance spectrum 
(7% reflectance from 300 to 700 nm). In practice, however, most 

F IGURE  1 Chromaticity diagrams, ΔS, and photoreceptor outputs of the basic setup of color vision model simulations: (a) Chittka (1992) 
color hexagon (CH), (b) Endler and Mielke (2005) color triangle (EM), and (c) linear and (d) log-linear Receptor Noise Limited models (Linear-
RNL and Log-RNL; Vorobyev & Osorio, 1998; Vorobyev et al., 1998). Colors in chromaticity diagrams correspond to reflectance spectra from 
Supporting Information Figure S1d. ΔS-values (middle row) and photoreceptor outputs (bottom row) as a function of reflectance spectra 
with midpoints from 300 to 700 nm. Violet, blue, and green colors represent short, middle, and long λmax photoreceptor types, respectively. 
Vertical lines represent the midpoint of maximum ΔS-values
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studies that apply color vision models use chromatic reflectance 
backgrounds, such as a leaf (e.g. Vorobyev et al., 1998), or an aver-
age of background-material reflectance spectra (e.g. Gawryszewski 
& Motta, 2012). Models are constructed so that the background re-
flectance spectrum lies at the center of the color space. Vorobyev 
and Osorio (1998) specifically state that their linear receptor noise 
model is designed to predict perception of large targets, in bright 
light conditions and against an achromatic background. Despite this, 
given that photoreceptors adapt to the light environment condition, 
usage of chromatic background is probably reasonable (Vorobyev 
et al., 1998). I generated achromatic reflectance spectra ranging 
from 5% to 95% in 10 percent point intervals (Supporting Information 
Figure S2b), and instead of having an achromatic background, I used 
a chromatic background (Supporting Information Figurre S2c). The 
background is the average reflectance of leaves, leaf litter, tree bark, 
and twigs collected in an area of savanna vegetation in Brazil (data 
from Gawryszewski & Motta, 2012).

The chromatic background causes differences in background 
photoreceptor photon catches. Consequently, achromatic reflec-
tance spectra do not lie at the center of the color spaces as would 
be expected. The CH model shows a maximum ΔS value of 0.31 at 
5% reflectance achromatic spectrum (Figure 3a). ΔS values then 
decrease as the reflectance value of achromatic spectra increases 
(Figure 3a). The EM model produces spurious values at 5% reflec-
tance achromatic spectrum because it generates negative photore-
ceptor output values (Figure 3b). From 15% and beyond, ΔS values 
then decrease as the reflectance value of achromatic spectra in-
creases (Figure 3b). The linear-RNL model shows a linear increase in 
ΔS values as the reflectance value of achromatic spectra increases 
(Figure 3c). Similarly, photoreceptor outputs also increase linearly 
as the reflectance value of achromatic spectra increases, but with 
different slopes for each photoreceptor type (Figure 3c). Contrary 
to other models, ΔS-values in the log-RNL model do not change 
with varying reflectance values of achromatic spectra (Figure 3d). 

F IGURE  2 Chromaticity diagrams, ΔS, and photoreceptor outputs of the second simulation—10 percentage points removed from 
reflectance values: (a) Chittka (1992) color hexagon (CH), (b) Endler and Mielke (2005) color triangle (EM), and (c) linear and (d) log-linear 
Receptor Noise Limited models (Linear-RNL and Log-RNL; Vorobyev & Osorio, 1998; Vorobyev et al., 1998). Colors in chromaticity diagrams 
correspond to reflectance spectra from Supporting Information Figure S2d. ΔS-values (middle row) and photoreceptor outputs (bottom row) 
as a function of reflectance spectra with midpoints from 300 to 700 nm. Violet, blue, and green colors represent short, middle, and long λmax 
photoreceptor types, respectively. Vertical lines represent the midpoint of maximum ΔS-values
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Although photoreceptor outputs increase as reflectance value of 
achromatic spectra increases (Figure 3d), the difference between 
photoreceptor outputs remains the same. Consequently, ΔS-values 
do not change.

This simulation shows that CH and EM models predict coun-
terintuitive values because a highly reflective achromatic stimulus 
is predicted to have a lower ΔS-value than a spectrum with simi-
lar reflectance to the background. This phenomenon has already 
been discussed previously both theoretically and experimentally 
(Stoddard & Prum, 2008; Vorobyev, 1999; Vorobyev & Brandt, 
1997; Vorobyev et al., 1999). For instance, in a laboratory experi-
mental setup, Vorobyev et al. (1999) showed that bees made more 
mistakes when trying to detect a grey target against a green back-
ground than when trying to detect a white target again the same 
green background.

Another common misconception arises from the use of detect-
ability/discriminability thresholds. The RNL model, for instance, is a 
good predictor of the detectability of monochromatic light against 
a gray background (Vorobyev & Osorio, 1998). For this model, and 
given the experimental condition, a ΔS = 1 equals one unit of just 
noticeable difference (JND; Vorobyev & Osorio, 1998). However, 
this threshold is not fixed. For zebra finches, for instance, the same 
pair of similar red objects have a discriminability threshold of ca. 1 
JND when the background is red, but much higher when the back-
ground is green (Lind, 2016). Furthermore, the relationship between 
ΔS values and probability of discriminability varies between species 
and it is not necessarily linear, in particular for ΔS values that greatly 
surpass threshold values (Garcia, Spaethe, & Dyer, 2017). In addition, 

correct model parametrization is vital for RNL models, which are 
very sensitive to correct photoreceptor noise values (Lind & Kelber, 
2009; Olsson et al., 2017a) and the relative abundance of photore-
ceptors in the retina (Bitton et al., 2017).

2.4 | Real reflectance data: comparison 
between models

In this setup, my aim was to compare model results using real reflec-
tance data. I used 858 reflectance spectra from flower parts col-
lected worldwide and deposited in the Flower Reflectance Database 
(FReD; Arnold, Faruq, Savolainen, McOwan, & Chittka, 2010). I 
used only spectrum data that had a wavelength range from 300 to 
700 nm. Data were then interpolated to 1-nm intervals and negative 
values converted to zero. I used the same reflectance background 
from simulation 03, and other model parameters identical to the 
basic model setup. I compared model results visually, and by test-
ing the pairwise correlation between the model’s ΔS values. I used 
the Spearman correlation coefficient because data did not fulfill as-
sumptions for a parametric test.

When real flower reflectance spectra are used, models also 
give different relative perception for the same reflectance spec-
trum. The results of the CH model and the log-RNL model are sim-
ilar both qualitatively and quantitatively: color loci projected into 
the color space (Supporting Information Figure S3) show a similar 
relative position of reflectance spectra, and there is a high cor-
relation score between ΔS values (ρ = 0.884; N = 858; p < 0.001). 
Even though many EM points lie outside the chromaticity diagram 

F IGURE  3 Third setup of color vision model simulations—achromatic stimulus against chromatic background: (a) Chittka (1992) color 
hexagon (CH), (b) Endler and Mielke (2005) color triangle (EM), and (c) linear and (d) log-linear Receptor Noise Limited models (Linear-RNL 
and Log-RNL; Vorobyev & Osorio, 1998; Vorobyev et al., 1998). ΔS-values (top row) and photoreceptor outputs (bottom row) as a function 
of spectra with achromatic reflectance from 5% to 95%. Violet, blue, and green colors represent short, middle, and long λmax photoreceptor 
types, respectively
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(Supporting Information Figure S3b), results suggest a high concor-
dance between CH and EM models (ρ = 0.889; N = 858; p < 0.001). 
There was moderate concordance between the linear and log 
versions of the RNL model (ρ = 0.434; N = 858; p < 0.001) and be-
tween the EM and log-RNL models (ρ = 0.662; N = 858; p < 0.001). 
Finally, there was poor concordance between the linear-RNL model 
and both EM models (ρ = −0.264; N = 858; p < 0.001), as well as 
the linear-RNL and CH models (ρ = 0.037; N = 858; p = 0.278).

In addition to the limitations commented above, these models 
also do not incorporate higher order cognition abilities that may af-
fect how color is perceived (Dyer, 2012). In bees, for instance, pre-
vious experience, learning and experimental conditions may affect 
their behavioural discriminability thresholds (Chittka, Dyer, Bock, & 
Dornhaus, 2003; Dyer, 2012; Dyer & Chittka, 2004; Dyer, Paulk, & 
Reser, 2011; Giurfa, 2004), and in humans, the ability to discriminate 
between colors is affected by the existence of linguistic differences 
for colors (Winawer et al., 2007). Moreover, models presented here 
are pairwise comparisons between color patches, which do not in-
corporate the complexity of an animal color pattern composed of a 
mosaic of color patches of variable sizes. Endler and Mielke (2005) 
provide a methodological and statistical tool that can deal with a cloud 
of points representing an organism’s color patches. Use of hyperspec-
tral cameras or adapted DSLR cameras may facilitate the analysis of 
animal coloration as a whole (Chiao, Wickiser, Allen, Genter, & Hanlon, 
2011; Stevens, Párraga, Cuthill, Partridge, & Troscianko, 2007). Other 
aspects that may be important when detecting a target, such as size, 
movement, light polarization (Cronin, Johnsen, Marshall, & Warrant, 
2014), and color categorization (Hempel de Ibarra et al., 2014; Kelber 
& Osorio, 2010), are also not incorporated into those models.

Therefore, accurate application of color vision models depends 
on the inspection of photoreceptor output values, knowledge of 
model assumptions, comprehension of the mathematical formula 
used for constructing each model, and familiarity with mechanisms 
of color vision of the animal being modeled. Comparison of model 
results with field and laboratory-based behavioural experiments are 
also crucial to complement and validate model results.

3  | A GENERIC METHOD FOR N-
DIMENSIONAL MODEL S

Despite some differences between these models, they can all 
be understood using the same general formulae. As explained in 
the section above, color vision is achieved by neural opponency 
mechanisms (Kelber et al., 2003; Kemp et al., 2015), although for 
most species the opponency channels have not been identified 
(Kelber et al., 2003; Kemp et al., 2015). In practice, the solution is 
to build a model so that all photoreceptor outputs are compared 
simultaneously. This is achieved by projecting photoreceptor out-
puts as vectors (vector lengths represent output values) into a 
space so that all vectors have the same pairwise angle (i.e. the 
resulting vector has length zero when all vector lengths are equal; 
Figure 4). Each model will present differently arranged vectors. 

However, they can all be reduced to the same general formula 
because vector position in relation to the axes has no biological 
significance as long as they preserve the same pairwise angle (see 
Vorobyev & Osorio, 1998).

By adding vectors, the length of the resultant vector represents 
the chromaticity distance of the stimulus against the background, 
and vector components represent the stimulus coordinates in 
the color space (color locus; Chittka, 1992). Vorobyev and Osorio 
(1998) assume that noise at photoreceptors limits chromatic dis-
crimination. In this case, each photoreceptor has a specific noise, 
and the chromaticity distance is given by the resultant photore-
ceptor length divided by its noise (see calculation below; Figure 4).

For a generic n-dimensional method, let i be the number of 
photoreceptor sensitivity curves. Assuming an opponency mech-
anism, the animal chromaticity diagram will have n = i − 1 dimen-
sions. In this space, there will be i vectors, each representing the 
output of one photoreceptor type (Figure 4a). Each vector will 
have i − 1 components (n = i − 1), each representing one coordi-
nate in the chromaticity diagram (Figure 4a). Photoreceptors are 
assumed to be weighted equally and give sum zero; therefore, 
their pairwise angle is given by: 

Then, the last component of a generic unit vector (v = [v1, v2, v3 … 
vn]) projected into a chromaticity diagram with n = i − 1 dimensions 
can be found by the following equations: 

If the chromaticity diagram has only one dimension, (i = 2), 
then the generic vector has only one component (n = 1), given by 
Equation 2. For a chromaticity diagram with more than one dimen-
sion (i > 2), other vector components are found by the following 
equation: 

where n is the total number of vector components, and k = (1, 2, 3, 
…, n − 1). Then a matrix of column vectors (size: i × n; each column 
represents one vector) with unit vectors equidistant from each other 
can be found by the following equation:

where v is the generic unit vector, as found by Equations 1–3. 
Equations 1–4 were found empirically.

(1)�=arccos

(
−
1

n

)
.

(2)v[n]=cos(�).

(3)v[n−k]=−
1

n−k

√√√√1−

n∑
m= n−k+1

v2
m

(4)Vi×n=

⎛
⎜⎜⎜⎜⎜⎜⎝

1v1 −1v1 0v1 0v1 0v1

1v2 1v2 −2v2 0v2 … 0v2

1v3 1v3 1v3 −3v3 0v3

⋮ ⋱

1vn 1vn 1vn 1vn −nvn

⎞
⎟⎟⎟⎟⎟⎟⎠
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Note that this is one of infinite possible solutions to project n 
vectors into a (n − 1) dimensional space. Although it will not have a 
biological meaning, nor affect results, other orientations of matrix V 
can be achieved by vector rotation matrices.

With matrix V, one can find a vector, whose components rep-
resent coordinates in the color space (X1, X2, …, Xn), by multiplying 
matrix V by a column vector with photoreceptor output as its com-
ponents (p = (p1, p2, p3, … pi)):

One may also represent Equation 6 as formulae, as is usually per-
formed when presenting color vision models.

Matrix V can be manipulated to accommodate different color vi-
sion models. Chittka (1992) assumes a maximum vector length of 
one (Equation S5, Supporting Information Appendix S1); therefore, 
matrix V can be used directly. The tetrachromatic version of Endler 
and Mielke (2005), however, assumes a maximum length of 0.75. 
Therefore, matrix V must be multiplied by a scalar with the desired 
length (see Supporting Information Appendix S1 for detail on model 
calculation using formulae above).

In the original study, Vorobyev and Osorio (1998) provided a 
method to calculate chromaticity distances (ΔS) independently of 
the matrix V, and their method is already applicable to any number 

of photoreceptor types (see also Clark et al. 2017 to another 
model extension). However, within Vorobyev and Osorio (1998) 
formulation, it is possible to find a space representing RNL model 
color space in terms units of receptor noise (see for instance 
Renoult et al., 2017 and Pike, 2012a,b). For a 2-D color space, the 
noise standard deviation will be given by the line segment, from 
the centre to the edge of the standard deviation contours, in the 
same direction as the vector representing the signal (Figure 4b). 
Then a vector, (s⃗), whose components represent coordinates in 
the color space, is found by dividing vector components by the 
length of the noise line segment (Figure 4b). This calculation can 
be performed by a simple change in Vorobyev and Osorio (1998, 
equation A7). In this new equation, the covariance matrix of recep-
tor noise in coordinates of the V matrix (equation A6 in Vorobyev 
& Osorio, 1998) are square-root transformed and multiplied by x 
so that vector length represents chromaticity distances instead of 
chromaticity distances to the square as in equation A7 (Vorobyev 
& Osorio, 1998):

where V is the matrix in Equation 4, T represents the transpose, x⃗ 
is a column vector with color locus coordinates (as in Equation 6), 
and R is a covariance matrix of photoreceptor output values. Since 
photoreceptor outputs are not correlated, R is a diagonal matrix 
with photoreceptor output variance (receptor noise) in their diago-
nal elements (e2

i
; Vorobyev & Osorio, 1998). The main advantage of 

Equation 7 is to allow visualization of RNL data into a space where 
distance between points corresponds to chromaticity distance val-
ues as calculated by Vorobyev and Osorio (1998) original equations.

(5)Vp⃗= x⃗

(6)

⎛
⎜⎜⎜⎜⎜⎜⎝

1v1 −1v1 0v1 0v1 0v1

1v2 1v2 −2v2 0v2 … 0v2

1v3 1v3 1v3 −3v3 0v3

⋮ ⋱

1vn 1vn 1vn 1vn −nvn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

⋮

pn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

X1

X2

⋮

Xn−1

⎞
⎟⎟⎟⎟⎠

(7)s⃗=

√(
VRVT

)−1
x⃗

F IGURE  4  (a) Example of photoreceptor outputs (p) from a trichromatic animal projected as vectors (red arrows) into a chromaticity 
diagram. The black arrow denotes a vector (s⃗) resulting from adding vectors p⃗1, p⃗2, and p⃗3. (Equation 6). Its components are the coordinates 
in the color space and its length, the ΔS value to the background in Chittka (1992) and Endler and Mielke (2005) models. Receptor noise 
models assume that discriminability thresholds are defined by noise at the photoreceptors. Gray points denote randomly generated vectors 
from normally distributed p values and their receptor noise (one standard deviation). Ellipse denotes the standard deviation. The ellipse is 
calculated from p⃗ vectors and their receptor noise. (b) Inset showing the ellipse and its eigenvectors, with the size adjusted to one standard 
deviation. The length of the line segment in blue represents vector s⃗ standard deviation. Receptor noise value against the background is 
simply the length of vector s⃗ divided by its standard deviation
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The boundaries of the color space will depend on the calculation 
of photoreceptor outputs. For instance, in Chittka (1992) color hexa-
gon model, a trichromatic color space is represented by a hexagon, 
whereas in the Endler and Mielke (2005) model, the color space is re-
duced to a triangle because summation of photoreceptor outputs is 
assumed to equal 1 (Equation S9; Supporting Information Appendix 
S1). In contrast, transformations used by receptor noise models 
(Vorobyev & Osorio, 1998; Vorobyev et al., 1998) impose no upper 
limit, and therefore, the color space has no defined boundary.

Furthermore, when extending models to accommodate different 
numbers of photoreceptors (e.g. from a tetrachromatic to a penta-
chromatic version), there is often a trade-off between preserving 
the edge size (distance between color space vertices) and preserving 
vector length. Pike (2012a), for instance, holds edge distance con-
stant when changing color space dimensions; however, this comes 
at the cost of increased vector length as the number of dimensions 
increases. In practice, preserving an edge length of 

√
2 means that 

for a trichromat, the maximum chromaticity distance from the center 
to the edge, is 0.816, but 0.866 for a tetrachromat. In contrast, chro-
maticity distances in receptor noise limited models are independent 
of the color space geometry (Vorobyev & Osorio, 1998). The generic 
matrix V allows for a user-defined adjustment of color space size.

Distances in chromaticity diagrams are assumed to represent 
chromaticity similarities between two colors. The assumption is that 
the longer the distance, the more dissimilar the two perceived col-
ors are (note, however, that this relationship is not necessarily linear; 
see for instance Garcia et al., 2017). Chromaticity distances between 
a pair of reflectance spectra (a and b) are found by calculating the 
Euclidian distance between their color loci in the color space:

By definition, background reflectance lies at the centre of the 
background (X1b =0, X2b =0, … ,Xnb =0).

4  | COLOURVISION: R PACK AGE FOR 
COLOR VISION MODEL S AND REL ATED 
FUNC TIONS

Colourvision is a package for color vision modeling and presentation of 
model results (Figure 5). The package implements the general method 
for n-dimensional models presented above and therefore are able to 
generate user-defined color vision models using a simple R function (a 
model not implemented in colourvision, or a new user-defined model), 
which complements other packages and software already available 
(e.g. pavo, Maia, Eliason, Bitton, Doucet, & Shawkey, 2013). The main 
advantages of colourvision are (a) the flexibility to build a user-defined 
color vision models; (b) extension of all color vision models to any 
number of photoreceptors; and (c) user-defined adjustments of color 
space when changing number of photoreceptors.

Within this unified framework, researchers may easily test 
variations from current models that may better represent real-
ity. For instance, it is possible to use a tetrachromatic version of 
Chittka, 1992 color hexagon with same vertex length as in the 
trichromatic version (in fact with any desired length), instead of 
a fixed vector length as in Thery and Casas (2002). By extend-
ing models to any number of photoreceptor types, colourvision 
makes it possible, for instance, to model the vision of tenta-
tively pentachromatic organisms (e.g. Drosophila melanogaster; 
Schnaitmann, Garbers, Wachtler, & Tanimoto, 2013), and test 
model predictions against behavioural data using all models. 
Furthermore, with the general function to produce user-defined 
models, it is possible, for example, to generate a receptor noise 
limited model that transforms photon catch data by x/(x + 1) in-
stead of ln (note, however, that these new models have not been 
validated by behavioural data).

Furthermore, model outputs in colourvision can be projected into 
their chromaticity diagrams using plot functions (Figure 5). For instance, 

(8)ΔS=

√(
X1a

−X1b

)2
+
(
X2a

−X2b

)2
+…+

(
Xna

−Xnb

)2
.

F IGURE  5 Diagram showing the main 
functions in colourvision (v2.0) R package. 
Users provide input data that may be 
changed by data handling functions. Input 
data are arguments used by color vision 
model functions. There are functions to 
the most commonly used color vision 
models, and a general function able 
to generate user-defined color vision 
models (GENmodel). These models have 
been extended to accept any number of 
photoreceptor types. Some functions 
are used internally (internal inset) in 
models but may be of interest for more 
advanced users. Model functions generate 
a comprehensive output, which may be 
visualized into model-specific color spaces 
using plotting functions
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data from a Chittka (1992) model are easily plotted into a hexagonal 
trapezohedron, which represents the color space boundaries of a tet-
rachromat in this model. The package also provides additional plotting 
functions for visualization of photoreceptor inputs and outputs into a 
radar plot, as well as functions to handle input data (Figure 5).

To provide a quick illustration on the potential application of 
colourvision I used the same setup as in simulation 3 (section 2). 
However, I randomly sampled 50 flowers to serve as reflectance 
stimuli, and, instead of the honeybee, I simulated dichromatic, 
trichromatic, tetracromatic, and pentachromatic animals. I generated 
all combination of spectral sensitivities curves from 330 to 630 nm, 
with 30-nm intervals, and calculated log-RNL (assuming 0.1 receptor 
noise to all photoreptors) and CH model outputs. In addition, to test 
the dependency of ΔS-value to the color space dimensions, I further 
calculated a CH model, but holding a fixed vertex distance of 

√
3, 

instead of a fixed vector length of 1. I used the maximum mean ΔS-
value as a selection rule for the best set of photoreceptors (alterna-
tively one could have applied the number of flowers above a certain 
threshold; see for instance Chiao, Vorobyev, Cronin, & Osorio, 2000).

All three models found the same best set of photoreceptors for 
di-, tri-, tetra-, and pentachromatic animals: 330 and 420 nm (dichro-
mat), 330, 420, and 570 nm (trichromat), 330, 390, 420, and 570 nm 
(tetrachromat), and 330, 360, 420, 450, and 570 nm (pentachromat). 
In addition, distribution of ΔS-values showed an increase in ΔS-
values and a reduction in variability as the number of photoreceptor 
increases (Figure 6). Interestingly, however, the best trichromatic 
model is as good as most pentachromatic models. Comparison be-
tween CH model with fixed vector length and CH with fixed vertex 
distance shows a similar pattern, but there is a decrease in ΔS-value 
for <3 photoreceptors and an increase in ΔS-value for >3 photore-
ceptors (Figure 6).

All calculations and color space figures in this study were per-
formed using the colourvision R package (R scripts are available 
in the Supporting Information Data S1–S4), which also illustrate 
potential package applications. For more detail on how to use co-
lourvision, refer to the user guide vignette (https://cran.r-project.
org/web/packages/colourvision/vignettes/colourvision-vignette.
html).
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