http://repositorio.unb.br/handle/10482/10945
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_NoiseRobustSpeaker.pdf | 988,9 kB | Adobe PDF | Visualizar/Abrir |
Título: | Noise-robust speaker recognition using reduced Multiconditional Gaussian Mixture models |
Autor(es): | D’Almeida, Frederico Quadros Nascimento, Francisco Assis de Oliveira Berger, Pedro de Azevedo Silva, Lúcio Martins da |
Assunto: | Voz - ruído Interação homem-máquina Compressão de dados (Computação) Reconhecimento automático da voz |
Data de publicação: | 2008 |
Editora: | Brazilian Association of High Technology Experts (ABEAT) |
Referência: | D'ALMEIDA, Frederico Quadros et al. Noise-robust speaker recognition using reducedMulticonditional gaussian mixture models. The International Journal of Forensic Computer Science, v. 3, n. 1, p. 60-69, 2008. Disponível em:<http://www.ijofcs.org/abstract-v03n1-pp06.html>. Acesso em: 19 jun. 2012. doi: 10.5769/J200801006 |
Resumo: | Multiconditional Modeling is widely used to create noise-robust speaker recognition systems. However, the approach is computationally intensive. An alternative is to optimize the training condition set in order to achieve maximum noise robustness while using the smallest possible number of noise conditions during training. This paper establishes the optimal conditions for a noise-robust training model by considering audio material at different sampling rates and with different coding methods. Our results demonstrate that using approximately four training noise conditions is sufficient to guarantee robust models in the 60 dB to 10 dB Signal-to-Noise Ratio (SNR) range. |
Licença: | Disponível sob Licença Creative Commons 3.0, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta. |
DOI: | https://dx.doi.org/10.5769/J200801006 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Este item está licenciada sob uma Licença Creative Commons