Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/10945
Files in This Item:
File Description SizeFormat 
ARTIGO_NoiseRobustSpeaker.pdf988,9 kBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorD’Almeida, Frederico Quadros-
dc.contributor.authorNascimento, Francisco Assis de Oliveira-
dc.contributor.authorBerger, Pedro de Azevedo-
dc.contributor.authorSilva, Lúcio Martins da-
dc.date.accessioned2012-07-16T13:45:26Z-
dc.date.available2012-07-16T13:45:26Z-
dc.date.issued2008-
dc.identifier.citationD'ALMEIDA, Frederico Quadros et al. Noise-robust speaker recognition using reducedMulticonditional gaussian mixture models. The International Journal of Forensic Computer Science, v. 3, n. 1, p. 60-69, 2008. Disponível em:<http://www.ijofcs.org/abstract-v03n1-pp06.html>. Acesso em: 19 jun. 2012. doi: 10.5769/J200801006en
dc.identifier.urihttp://repositorio.unb.br/handle/10482/10945-
dc.description.abstractMulticonditional Modeling is widely used to create noise-robust speaker recognition systems. However, the approach is computationally intensive. An alternative is to optimize the training condition set in order to achieve maximum noise robustness while using the smallest possible number of noise conditions during training. This paper establishes the optimal conditions for a noise-robust training model by considering audio material at different sampling rates and with different coding methods. Our results demonstrate that using approximately four training noise conditions is sufficient to guarantee robust models in the 60 dB to 10 dB Signal-to-Noise Ratio (SNR) range.en
dc.language.isoInglêsen
dc.publisherBrazilian Association of High Technology Experts (ABEAT)en
dc.rightsAcesso Abertoen
dc.titleNoise-robust speaker recognition using reduced Multiconditional Gaussian Mixture modelsen
dc.typeArtigoen
dc.subject.keywordVoz - ruídoen
dc.subject.keywordInteração homem-máquinaen
dc.subject.keywordCompressão de dados (Computação)en
dc.subject.keywordReconhecimento automático da vozen
dc.rights.licenseDisponível sob Licença Creative Commons 3.0, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta.en
dc.identifier.doihttps://dx.doi.org/10.5769/J200801006en
Appears in Collections:Artigos publicados em periódicos e afins

Show simple item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/10945/statistics">



This item is licensed under a Creative Commons License Creative Commons