Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/52521
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_GeneralizedPeriodicityApplications.pdf1,53 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBohner, Martin-
dc.contributor.authorMesquita, Jaqueline Godoy-
dc.contributor.authorStreipert, Sabrina-
dc.date.accessioned2025-09-26T11:40:31Z-
dc.date.available2025-09-26T11:40:31Z-
dc.date.issued2024-06-28-
dc.identifier.citationBOHNER, Martin; MESQUITA, Jaqueline Godoy; STREIPERT, Sabrina. Generalized periodicity and applications to logistic growth. Chaos, Solitons & Fractals, [S.l.], v. 186, e115139, 2024. DOI: https://doi.org/10.1016/j.chaos.2024.115139. Disponível em: https://www.sciencedirect.com/science/article/pii/S096007792400691X?via%3Dihub. Acesso em: 07 ago. 2025.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/52521-
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleGeneralized periodicity and applications to logistic growthpt_BR
dc.typeArtigopt_BR
dc.subject.keywordEquações diferenciais linearespt_BR
dc.subject.keywordExistência e unicidadept_BR
dc.subject.keywordConjectura de Cushing-Hensonpt_BR
dc.rights.licenseThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.chaos.2024.115139pt_BR
dc.description.abstract1Classically, a continuous function 𝑓 ∶ R → R is periodic if there exists an 𝜔 > 0 such that 𝑓(𝑡 + 𝜔) = 𝑓(𝑡) for all 𝑡 ∈ R. The extension of this precise definition to functions 𝑓 ∶ Z → R is straightforward. However, in the so-called quantum case, where 𝑓 ∶ 𝑞 N0 → R (𝑞 > 1), or more general isolated time scales, a different definition of periodicity is needed. A recently introduced definition of periodicity for such general isolated time scales, including the quantum calculus, not only addressed this gap but also inspired this work. We now return to the continuous case and present the concept of 𝜈-periodicity that connects these different formulations of periodicity for general discrete time domains with the continuous domain. Our definition of 𝜈-periodicity preserves crucial translation invariant properties of integrals over 𝜈-periodic functions and, for 𝜈(𝑡) = 𝑡 + 𝜔, 𝜈-periodicity is equivalent to the classical periodicity condition with period 𝜔. We use the classification of 𝜈-periodic functions to discuss the existence and uniqueness of 𝜈-periodic solutions to linear homogeneous and nonhomogeneous differential equations. If 𝜈(𝑡) = 𝑡 + 𝜔, our results coincide with the results known for periodic differential equations. By using our concept of 𝜈-periodicity, we gain new insights into the classes of solutions to linear nonautonomous differential equations. We also investigate the existence, uniqueness, and global stability of 𝜈-periodic solutions to the nonlinear logistic model and apply it to generalize the Cushing–Henson conjectures, originally formulated for the discrete Beverton–Holt model.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-8310-0266pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-1255-9384pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5380-8818pt_BR
dc.contributor.affiliationMissouri University of Science and Technology, Department of Mathematics and Statisticspt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Mathematicspt_BR
dc.contributor.affiliationUniversity of Pittsburgh, Department of Mathematicspt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.