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ARTICLE INFO ABSTRACT

Keywords: Classically, a continuous function f: R — R is periodic if there exists an w > 0 such that f(t + @) = f(1)
Periodicity for all + € R. The extension of this precise definition to functions f : Z — R is straightforward. However,
Existence in the so-called quantum case, where f : g™ — R (¢ > 1), or more general isolated time scales, a different
Uniqueness

definition of periodicity is needed. A recently introduced definition of periodicity for such general isolated
time scales, including the quantum calculus, not only addressed this gap but also inspired this work. We now
return to the continuous case and present the concept of v-periodicity that connects these different formulations
of periodicity for general discrete time domains with the continuous domain. Our definition of v-periodicity
preserves crucial translation invariant properties of integrals over v-periodic functions and, for v(t) = ¢ + o,
v-periodicity is equivalent to the classical periodicity condition with period w. We use the classification of
v-periodic functions to discuss the existence and uniqueness of v-periodic solutions to linear homogeneous
and nonhomogeneous differential equations. If v(r) = t + w, our results coincide with the results known for
periodic differential equations. By using our concept of v-periodicity, we gain new insights into the classes
of solutions to linear nonautonomous differential equations. We also investigate the existence, uniqueness,
and global stability of v-periodic solutions to the nonlinear logistic model and apply it to generalize the

Global stability

Linear differential equations
Logistic growth
Beverton-Holt model
Cushing-Henson conjecture

Cushing-Henson conjectures, originally formulated for the discrete Beverton—-Holt model.

1. Introduction

Differential equations are a common tool to describe time-dependent
processes mathematically, and various techniques have been developed
to investigate their dynamics (e.g., existence, uniqueness, and stability
of constant and periodic solutions). Interest to develop such analyti-
cal methods for their discrete counterparts, formulated as difference
equations, has been increasing, partially due to its computational
advantages. More recently, attention has been paid to extending these
tools to dynamic equations on time scales, as they can be under-
stood as a unification and generalization of differential and difference
equations [1]. Different reasons exist for describing processes either
continuously, discretely, or using time scales, including model complex-
ity and computational convenience. Although the available methods to
study the dynamics of a model varies with the chosen framework, their
underlying ideas are often related. For example, in all three modeling
frameworks (continuous, discrete, time scales), one may attempt to
derive an explicit solution by making a solution ansatz.

With increasing model complexity, however, the available methods
to investigate properties of solutions become more framework specific
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and, in fact, overall reduces. For example, while the subclass of au-
tonomous linear differential equations benefits from specific solution
techniques, these tools are generally not applicable to their nonau-
tonomous counterparts such as periodic equations and are often used
in applications, e.g., physics and chemistry [2-5], ecology [6-9], and
epidemiology [10-12]. Periodic differential equations are characterized
by model parameters that are periodic functions. Despite their complex-
ity due to their nonautonomous nature, methods have been developed
to study these periodic differential equations, for example, by relating
them to a corresponding discrete Poincaré map — an example, where the
study of a discrete model aids the analysis of a continuous differential
equation.

In these models, periodicity refers to the classical definition by
Euler, who described periodic functions with period @ > 0 by the
property that f(t + w) = f(w) for all t € D Iz where D ;18 the domain
of the function f. This definition of periodicity resulted in specific
properties of periodic functions such as the translation invariance of the

integral:
b b+w
/ f(t)dt=/ f@de €Y
a at+w

atw b+w
/ f(l)df=/ Sf(o)ds,
a b
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for a,b € D r and any w-periodic function f D, - R Both
properties in (1) are based on the realization that the area underneath
any w-periodic function is translation invariant in the sense that the
value of the area for one period is independent of the starting point
and the bounds can be shifted by any multiple of the period. Such
properties of periodic functions are exploited to derive mathematical
methods that aid the analysis of periodic differential equations. Similar
analytical simplifications can be obtained in the study of periodic
difference equations and periodic dynamic equations on time scales,
where periodicity is also defined by f(t + w) = f(¢) for all + € Z and
t € T, respectively. Here, T # @ is an arbitrary closed subset of R,
referred to as time scale [1]. In the case of dynamic equations on time
scales, this classical definition of periodicity requires the time scale T
to be periodic, that is, t+ w € T for all t € T.

It is exactly this periodic restriction of the time scale that sparked
discussions of the generalization of periodicity. In [13], the authors par-
tially addressed this question and introduced a concept of periodicity
for isolated, not necessarily periodic, time scales. This generalization
of periodicity for isolated time scales, i.e., time scales for which every
element is isolated, provided a classification of “periodic” functions
that satisfy (1). This classification ultimately resulted in new insights
of solutions to nonautonomous difference equations that are not pe-
riodic in the classical sense [13]. Motivated by these gained insights,
we return to the continuous case of differential equations and define
a generalization of periodicity that relates periodic functions in the
continuous case to these recently developed concepts of periodicity for
discrete time spaces such as isolated time scales.

By generalizing the idea of periodicity to preserve the convenient
properties (1), we aim to extend results known for periodic differ-
ential equations to a broader subclass of nonautonomous differential
equations. Since periodic model parameters are often used to represent
environmental fluctuations [8,14-16], we explore our new definition
in the context of the popular logistic growth model

= (1-%)
—x=rx|1-=),
dr K

where r > 0 represents the inherent growth rate and K > 0 the
carrying capacity. While the autonomous case of (2), that is, r, K € R*,
implicitly assumes that the growth rate and the environment are time
independent, environmental changes that impact the carrying capacity
can be captured by considering a time-dependent K : R — R* instead.

Our study of the logistic model (2) is not only motivated by its
popularity and applicability in mathematical population modeling but
also due to its vastly different behavior to some of its discrete coun-

tEeR, 2

terparts. For example, the difference equation X,,, — X, =: 4X, =
rX, (1 - %) is sometimes referred to as “logistic difference equation”,

but its dynamics is not consistent with the continuous model and can
indeed result in negative solutions and chaotic behavior. In contrast,
the discrete Beverton—Holt model [17]

X,K

Xy = —1
T 1=K +rX,

t e Ny, 3
exhibits the same monotone dynamics as (2). Hence, one may argue
that the Beverton-Holt model should indeed be called the “discrete
analogue of the logistic growth model”. Thus, the logistic growth
model highlights the potential similarities and dissimilarities between
differential and difference equations and, therefore, the relevance of
the underlying time domain.

In this work, we utilize the relation between the continuous logistic
growth model and the Beverton-Holt model to apply our newly intro-
duced concept of periodicity. More precisely, we apply the generaliza-
tion of periodicity to the continuous logistic growth model to formulate
and investigate the Cushing—Henson conjectures that were originally
formulated for the discrete Beverton-Holt model. Cushing and Henson
conducted experiments with flour beetles that were described using (3),
to quantify the effects of periodically varying environmental conditions
on the population [18,19]. Based on the experimental observations,
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the authors formulated two conjectures regarding a periodically forced
Beverton-Holt model. The first conjecture guarantees the existence
of a unique periodic population level to which the population con-
verges to, while the second conjecture implies a deleterious effect
of introducing periodic environmental conditions. These conjectures
have been mathematically confirmed for the Beverton-Holt recurrence
in [20,21]. In [22], the conjectures have been shown to uphold for
the time scales analogue of the Beverton—-Holt model on a periodic
time scale. Recently, in [23], the condition of a periodic time scale has
been relaxed and the conjectures have been discussed for the logistic
dynamic equation on isolated time scales. The removal of the rather
restrictive condition of a periodic time scale was possible due to a new
definition of periodicity that accounted for changes in the underlying
time domain. In this work, we will also relax the condition of periodic
model parameters and investigate the Cushing-Henson conjectures for
the logistic differential equation for a wider class of time-dependent
model parameters by applying our generalization of periodicity.

2. Generalization of periodicity

Throughout this work, let I c R be an interval which is unbounded
above.

Instead of defining periodicity with respect to a fixed period, we
propose the following dynamic definition of periodicity.

Definition 1. Letv : I — I be differentiable and strictly increasing. A
function f : I — R is called periodic with respect to v (short: v-periodic)
provided that

Vfvm) = f(0

The set of functions f € C(I,R) that satisfy (4), for v € C!(I,R) strictly
increasing, is denoted by P,(I).

forallre . @

Choosing v(t) = t + w for € R* = (0, ), Definition 1 collapses to
the classical definition of periodicity as (4) then reads: f(t + w) = f(¢)
for all t € I C R. Note that if ® € Q, then the Dirichlet function is
v-periodic. Here, the reader is reminded that condition (4) does not
impose continuity conditions on f.

Example 2. The constant function f = C € P,(I) if and only if C =0
orv(t)=t+cforce ]Rg: [0, c0).

Example 3. Although f(r) = ¢’ is not periodic in the classical sense
(that is, f is not periodic wrt. v(f) = t + w), f() = ¢ € P,R) for
v(t) = In(e' + w) for any w € R*.

Example 4. The trigonometric functions cos(f) and sin(?) satisfy (4) for
v € C*(R,R) only for v(f) = t+2x, consistent with the classical definition
of periodicity. To show that there is no other strictly increasing, twice
differentiable v : R — R such that

V! (1) cos(v(t)) = cos(r), teR, )
we note that after integrating (5), we have

sin(v(t)) = sin(t) + D, DeR. (6)
Now, differentiating (5) implies

V(1) cos(v(1)) — (v (1)) sin(v(1)) = — sin(?),

and by using (5) and (6), this is equal to

V(1) NV :
— cos(t) — (V/(1)~(sin(?) + D) = —sin(?).
V(1)
Therefore, w(r) = V() > 0 must satisfy the Bernoulli differential
equation

w'(t) = (tan(t) + D sec(t))w3 () — tan(t)w(t)
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that has two branches of solutions
1

w(t) =+ ,
V1 + ¢, sec(r) — 2D sec(?) tan(r)

for ¢;, D € R, whenever the denominator is well-defined. If ¢;, D # 0,
then the integral of the positive branch is

—1 [ V2D4sing) \
tan <—\/'; >sec(t)\/ﬁ

\/5\/1 + ¢; sec2(r) — 2D sec(r) tan(t)’

where m = 1 + 2¢; + cos(2t) — 4D sin(¢). This however has a vertical
asymptote at t = g +2zn for any n € N. Thus, the only positive solution
is w(t) =1 (i.e., ¢, = D =0), implying v(r) = [ w(t)dt =t + C. Then, (5)
determines C = 2x, resulting in the classical definition of periodicity
with period 2x.

u(t) =

Remark 5. It is worth noting that v-periodic functions relate to
solutions of the Schroder equation [24]:

WD) =V (z)w (D), )

where v : R - R and z, € R is a fixed point of v, i.e., v(z;) = z,, and
V/(zy) # 0. The Schroder equation is, for example, used in dynamical
systems to study chaos and to discuss renormalization groups [25,26].
We now show that this equation is also related to the set of v-periodic
functions. Let w(¢) # 0 be a solution to the Schroder equation (7). Then,
differentiating (7) implies that y'(v()V'(r) = V/(zq)y'(¢) and therefore,

= Y0
for f() = 75

,( ) Vi (zgy! (1) /(t)
v _ T ve v
v = O~ v T

Thus, a v-periodic solution can be constructed from a solution to
the Schroder equation and vice versa. Works that have addressed the
existence of solutions to the Schréder equation are [27-29].

VL) =v o)

In contrast to the classical definition of periodicity, where deriva-
tives and anti-derivatives of periodic functions remain periodic, (4)
does not have to hold for derivatives or anti-derivatives of v-periodic
functions. Thus, v-periodicity is not necessarily invariant with respect
to the functional operators of differentiation and integration. However,
Definition 1 assures a fundamental property of periodic functions, that
is, the area under a periodic function over its period is translation
invariant in the sense of (1). To prove this crucial aspect, we first define,
for f € C(1,R),

v(t)

F, (1) := f(r)dr, tel. (8)
t

Lemma 6. If f € C(I,R) and F, is as defined in (8) for v € C'(I,R),

then

Fé:v’fv—f, tel,

where fV = fov.

Proof. With H() := /,(’] f@)dz, 1y € I, we have
F,(@®=HV@®)-H@).

Hence, by the chain rule,

Fl(=VOH () = H @) =V () f(v(1) = f(O) =V O f* () = f(©),
confirming the claim. [J

Theorem 7. If f € P,(I), then

v(t) v(tg)
f(@)dr = / f(@)dr,

t 1

1,1 € 1. )
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Proof. By Lemma 6 and (4), Fv’ =V fY— f =0, so F, defined in (8) is
constant. []

Example 8. By Example 3, f(1) = ¢’ € P, (R) for v(t) = In(e’ + @) and
o € R*. Then, we have for t,s € R,

v(t) 1n(e'+m)
/ e’dr:/ cfdr=e+o—-e=n=e+0-¢°
t t

In(e’ +w) v(s)
= / efdr = / et dr,
s N

as predicted in (9).
Theorem 9. If f € P,(I), then

b v(b)
/ f()dr = f(o)dr, a,bel. (10)
a v(a)

Proof. Since f € P,(I), we have
v(b)

b b
» f(T)dT=/ V'(T)f(V(T))dT=/ f(®)dz,

completing the proof. []

Although the definition of v-periodicity via (4) may seem, at first
glance, unrelated to our classical understanding, Theorems 7 and 9 con-
firm that the crucial properties of translation invariance, summarized
in (1), remain true for our extension of periodicity. Another relation to
the classical formulation of periodicity can be identified by considering
the class of anti-derivatives of v-periodic functions. Consider F(r) =
/ f(s)ds. Then, if F(v()) = F(t) for allt € I, f € P,(I). Note however
that the set of derivatives of continuously differentiable functions that
satisfy F(v(t)) = F(r) is only a subset of v-periodic functions because
even if F(v(t)) = F(t) + C for C # 0, F' still satisfies (4).

Some other useful properties known from the classical definition
of periodicity that also hold for v-periodicity are formulated in Lem-
mas 10-11.

Lemma 10. We have P,(I) C P,.,(I).

Proof. Assume V' (1)f(v(t)) = f(t) for all + € I and define ¥(t) =
(vov)() = v(v(1)). Then

VO f@@) =V OV (VO f (v(v(B) =V O f(v(D) = F ().

Hence, f is (vov)-periodic. []
Lemma 11. If f,ge P,(I)and a,f € R, then af + fg € P,(I).

Proof. We have
Vinaf + B)(v(@) = aV' ) f (V1) + BV (Dg(v(D) = af (1) + Bg(),

completing the proof. []

Remark 12. Lemmas 10-11 remain true for discontinuous f : U —» R
for U C R that are v-periodic, that is, f satisfies the identity (4).

Remark 13. Note that the product of two v-periodic functions is not
necessarily v-periodic. However, if f € P,(I) and g(v(t)) = g(¢) for all
tel, then f-geP,()and, if g #0, f eP,).

Remark 14. Given a function f € C(I,R), (4) identifies the family
of functions v such that f € P, (I). More precisely, v can be obtained
by solving a differential equation. Alternatively, integrating (4) with
respect to ¢ yields F(v(t)) = ﬁ(r) +C,fort eI, C € R, and F(l) =
é’] f(s)ds for some 1, € I.If f does not change sign on I, then
F is monotone and an explicit expression for v can be obtained via
v(t) = F-U(F(1) + O).



M. Bohner et al.

Remark 15. The description of the set P, (1), for a given v, is directly
linked to solving a functional equation. Assume that v is continuously
differentiable, strictly increasing and there exists £ € I such that v/(¢) <
1 and, additionally, the following two properties hold:

@ ()= —-ty>0forre It #¢,
b) W) —EE-1)<O0forte I t+E.

Then, the only continuous function f that is v-periodic is the trivial
function f = 0. This can be shown by applying [30, Theorem 2 (p. 6)].
Consequently, the only continuous function that is v-periodic, where
v(t) = \/;, and I = (%,oo) is the trivial function.

3. Periodic solutions to first-order linear differential equations

In this section, we apply the definition of periodicity to study the ex-
istence of periodic solutions to first-order linear differential equations.
We are specifically interested in the conditions to guarantee the exis-
tence and uniqueness of v-periodic solutions to a given nonautonomous
linear differential equation. For the remainder of this manuscript, we
let v : I — I be a twice differentiable, strictly increasing function.

To simplify our notation, we define for f € C(I,R),

t
es(t,s) :=exp{/ f(r)d‘r}, s,tel an
and
Ep(u(0).1) := V' (D)e ;(W(1), 1), rel 12

By the properties of exponential functions, we immediately have for
f€eCUR),

ef(t, s) = e_f(s, 1= %e/-(t, s) = f(t)e/-(t, s),

1
ep(s,0)’
et s)ep(s,r) =ep(t,r),

for r,s,t € I.

Theorem 16. If f € P (1), then
e (v(t),1) is independent of t € 1
and

er(v(n), v(s)) = es(t,s) foralt,sel.

Proof. The first statement is true due to Theorem 7 and the definition
of e,(t, s). From

(v(®), v(s)) = e (v(1), De (1, 5)e s ( ())—ef(vm’t) t,s) =es(t,s)
er v(t), v(s)) = es(v ), )ef( ,8)es(s,v(s) = ef(v(s),s)ef( ,8) = es(t,s),
we see that the second statement holds as well. []

Lemma 17. For f € C(I,R), we have

E (v(t),1) is independent of t € I

if and only if

V"

7+v’f”=f onI. 13)

Proof. Using Lemma 6, we get

= & (Ve 00.0)

=V 0e,(v), ) +V (O {V O S @0) = F(D} e, (VD). 1)
={V'0) + (VO S (0) =V O LD} e (v(D), D),

and thus, E(v(r),1) is independent of 1 € I, i.e., % (E;(v(0),n) =0, iff
f satisfies (13). [

d
I (Ef(v(n),1)

Note that if e/ (#,7,) is v-periodic for some ¢, € I, then E (v(1),?) is
independent of ¢ because

E (v(n), 1) = V' (D)e (VD). tg)e (19, 1) = (v (D)e ;(W(1), 19)) (e (1, 19)) ™" = 1.
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3.1. Homogeneous differential equations

We consider the homogeneous first-order linear differential equa-
tion
x' = a(t)x, a4

where a € C(I,R) and I C R unbounded from above. The solution is
given by

t
x(t) = exp {/ a(s) ds} x(ty) = e, (t, tg)x(ty),
fo

We are specifically interested in the existence and uniqueness of
v-periodic solutions of (14). The next theorem provides sufficient con-
ditions for a solution to be v-periodic.

toe .

Theorem 18. Let a € C(I,R) satisfy (13) and x be a solution of (14). If
there exists t, € I such that

V (tg)x(v(1)) = x(1y),
then x is v-periodic.
Proof. Let g(r) := v/ (t)x(v(t)) — x(r). Then g(t,) = 0 and

g0y = V' (Ox(v(®) + (V (O x' (v(®) — ¥ (1)
= V') + (V) 2a(v(@)] x(v(@)) — a)x(?)

(13)
= a(ng(),
S0 g(1) = e, (t,ty)gtp) =0forallte I. [
Theorem 19. Let a € C(I,R) satisfy (13). If there exists t, € I such that

E,(W(to) 1) = 1,

then all solutions of (14) are v-periodic. In all other cases, (14) has no
nontrivial v-periodic solution.

Proof. The solution to (14) is v-periodic iff v/ ()x(v()) = x(¢), i.e.,

V(e (vt), Dx(ty) = x(ty),
(15)

V(e (v(t), to)x(ty) = e,(t,1)x(ty), i.e.,

ie., E,(v(t),0)x(ty) = x(ty). Clearly, x(t)) = 0 satisfies this equation so
that the trivial solution is always v-periodic. For x(t,) # 0, x(r) # 0,
and (15) is satisfied iff E,(v(r),t) = 1. Since a satisfies (13), E,(v(?),1) =
E,(v(ty).1y), by Lemma 17, and the claim follows. [J

Example 20. For the classical definition of periodicity, i.e., v(f) = t+w,
® € R*, a function f satisfies (13) if and only if f(r + w) = f(t)
for all #+ € I. Thus, Theorem 19 coincides with the classical result: If
a € C(I,R) and a(t + w) = a(¢) for all ¢ € I, then either all solutions to
x'(1) = a(1)x(r) are periodic or the only periodic solution is the trivial
solution. More precisely, if there exists 7 € I such that f;m" a(t)dt =0,
then all solutions to x'(f) = a(t)x(¢) are w-periodic. If no such 7 € T
exists, then the only periodic solution is the trivial one.

Example 21. If I = (0,c0) and v(t) = 3v/1, then a(t) = —} € C(1,R)
satisfies (13) and

E,(v().1) =V (t)e,(v(1).1) = IR TR #1.
24/t 2

By Theorem 19, only the trivial solution is v-periodic. Instead, consid-
ering now v(r) = 3t, (13) still holds but

E (), 1) =V (D)e,(v(t), 1) = 3k 97 = 1.

Hence, by Theorem 19, all solutions are v-periodic. Note that in both

cases, the differential equation is x’(f) = —t~!x(#) and its solution on I
is x(t) = @ fort, e 1.
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Example 22. The constant function a(rf) = a € R* satisfies (13) for

loo(aed +D at
v(t) = % for any D € R*. Note that V/(1) = ae”ﬂfﬁ > 0 so that

aeal

eav(r)fat =aq.
ae® + D

E,(v(1),1) = V' (e, (v(1),1) =
By Theorem 19, if a = 1, then all solutions are v-periodic. Else, if a # 1,

then no nontrivial solution is v-periodic.

Remark 23. In the classical theory of periodic linear differential
equations, there exists a w-periodic solution to x' = a(f)x if a(t + w) =
a(t) for all t € I. The corresponding result for the generalization of
periodicity is however not necessarily true. That is, if a € P, (1), then
x’ = a(f)x does not necessarily have a nontrivial v-periodic solution.
More precisely, suppose a € P, (I) and there exists a nontrivial solution
x to x’ = a(t)x. Then, by the same argument as in (15), E,(v(t),1) = 1
for all € I. By Lemma 17, this necessarily implies (13), that is,

V() + (V@) a(v(t) = V (Da().

However, since a is v-periodic, v'(f)a(v(r)) = a(t), so that (13) implies
V(1) =0 for all ¢ € I. Consequently, if v''(¢,) # 0 for some #, € I, then
x' = a(t)x with a € P,(I) does not have a nontrivial v-periodic solution.
Moreover, if v/'(f) = 0 for all z € I, then any v-periodic a € C(I,R) also
satisfies (13) and Theorem 19 applies.

3.2. Nonhomogeneous differential equations

We now bring our attention to nonhomogeneous first-order linear

differential equations. For that, we consider
x' = a(f)x + b(r), tel, 1e)

where a,b € C(1,R) and, as before, I is an interval in R, unbounded
from above. Its solution is given by

'
x(t) = e, (t,19)x(ty) + / e, (t,s)b(s)ds, tg€I. a7
0]

First, we provide a sufficient condition for a given solution to be
v-periodic.
Theorem 24. Let a € C(I,R) satisfy (13) and let b € C(1,R) satisfy
(V)b =b. s
If x solves (16) with
Vi (19)x(v(1p)) = x(ty)

for some t, € I, then x is v-periodic.

Proof. Define g(¢) := v/ (t)x(v(t)) — x(t). Then

£/(1) = V' (Ox((0) + vV (Ox MO (1) - X' (1)
V1 0x((0) + V)2 aME)xM0) + (V (0b0D) — alt)x(@) — b@)
VI Ox) + V)2 av)x () - a)x(@)
)V axe) - ax(0) = ag ().

Since g(ty) = 0, g(t) = 0, which completes the proof. []

Note that (18) is satisfied if b can be written as a product of two
v-periodic functions.

Example 25. In the classical case when v(t) = 7 + @ for ® € R*,
condition (13) reads as a(t + w) = a(t) and condition (18) collapses to
b(t + w) = b(¢) for all + € R. Thus, Theorem 24 states that if a and b are
w-periodic (in the classical sense), and there exists a solution x such that
x(ty + w) = x(ty) for some 1, € I, then x is w-periodic. This is consistent
with the classical theory of linear periodic differential equations.
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Lemma 26. Leta € C(I,R) satisfy (13) and let b € C(1,R) satisfy (18).
Define, for 1, € I,

v(t)
H(t; 1) = / e, (tg, $)b(s)ds (19)
1

then, forte I,

1

d o\ __
a0 = < E,(v(to): 1)

1) b(t)e,(ty,1).

Proof. Assume H is defined as in (19) for t € I. By Lemma 6, we have
for H'(1) = %H(z;to),
H' (1) = V' (e, (tg, vN)b(V(1)) — e,(tg, Db(T)

= v’(t)e_a(v(t), e, (ty, b(V(1)) — e, (ty, 1)b(t)

18) (e_,(v(®),1) _ 1 B
= <—w(z) —1> b(Ne,(ty, 1) = <—Ea(v(t)’ 5

By Lemma 17, E,(v(t),t) = E,(v(ty). 1), completing the claim. []

1> b(t)e,(1g.1).

Theorem 27. Let a,b € C(I,R) satisfy (13) and (18), respectively. If
E,(v(ty).1y) # 1 for some t, € I, then (16) has a unique v-periodic solution
X given by

v(t)
X(t) = Ae,(t, IO)/ e,(ty, s)b(s)ds, (20)
t

where
o E, (v(1p), 1p)
1= E,(v(tg), 1)

Proof. The solution of (16) is given by (17) and

v(t)
x(v(1)) = e, (v(1), )x(?) + / e, (v(t), s)b(s) ds.
t

If x is a v-periodic solution, then

v(t)

(1) =V (ORW(D) =V (t)e,(v(D), HX() + v’(t)/ e, (V(1), $)b(s) ds,

ie.,
x(1) = —LaVOD v, (1, $)b(s) ds = Ae, (1, 1) H(t: 10) (21)
—Eo00.0 ), <" o
where
Len_117 Ea(V(to)ato)

d (19) V(1)
_ an H(t;ty) = / e, (ty, $)b(s)ds.
1— E,(v(ty). 1) 0 . a0
Conversely, x given in (21) solves (16), because, by Lemma 26,

()= 4 {a(t)ea(t, 1) H (t; 1)) + e, (1, to)%H(I; to)}
_ . 1
=1 {a(r)ea(t, 1) H(t; 19) + e,(t, 1) (E,,(v(zo), o 1> b(t)ea(to,t)}
=4 {a(t)ea(t, to)H(t; 1)) + %b(t)} = a(t)x(t) + b(t),

and x is v-periodic, since

V(Ox(v(1) =V (1) Ae,(v(t), to) H(V(1); 1) = E,(v(t), 1)Ae,(t, 1) H(V(1); ty)

v(t)
= E,(v(t),1)Ae,(t, 1) {H(t; 1) +/ d%_H(‘r;tO) d‘r}

Lem1

Lem 2

w(r)
Z E,(v(ty): tg)Ae, (1, 15) {H(t; 1) + / %ea(to, 7)b(T) dr}

= E,(v(ty). to)Ae,(1.15) {H(t; 1)+ iH(t; zo)}

A 1 .
= T e(tt) {H(t; to) + < Ht: zo)} = de, (1. 1) H(t: 1) = X(1),
completing the proof. []

Example 28. In the classical case when v(r) = ¢ + @ for v € RT,
Theorem 27 states that if a and b are w-periodic (in the classical sense)
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and ft(')“”" a(s)ds # 0 for some t, € I, then there exists a unique
w-periodic solution x of (16), given by

+w "
X(t) = A / efs a5y ds
t

_/r0+w a(s)ds -
with A= (e 70 —1) . This is again consistent with the classi-

cal result for nonhomogeneous linear periodic differential equations.

The analogous result of Theorem 19 for the nonhomogeneous linear
differential equation is formulated as follows.

Theorem 29. Let a,b € C(I,R) satisfy (13) and (18), respectively. If

E,(v(tg),19) = 1 (22)
and

v(tg)
/ e,(tg, $)b(s)ds =0 (23)

To
for some t, € I, then all solutions of (16) are v-periodic. Otherwise, no
nontrivial solution of (16) is v-periodic.

Proof. Let x be a solution of (16). By (20),

v(t)
x(v(1)) = e, (v(1), )x(t) + / e, (v(t), 7)b(r)dr
t

and

v(t)
vV (Ox(v(t)) = v’(l)ea(v(t), Hx(t) + v'(l)/ e, (v(1), T)b()dr
t

Lem 17 { w(n) }
= E (v(tp),19) § x()+ / e, (t, )b(r)dr
t

(22) v(t)
= x(t)+ / e, (t,T)b(r)dr = x(t) + e, (t, 1)) H(t; 1)),
t

where H is defined in (19) and 7, € I. Note that (22) implies
%H (t;19) = 0 in Lemma 26. We therefore have

VI(Ox(v(t)) = x(t) + e, (t, to) H(ty; o)

and by (23), H(ty;ty)) = 0. Hence x is v-periodic and the proof is
complete. []

4. Application to the logistic differential equation

Consider the nonautonomous logistic growth model

)]

"0 = rox (1 - X9 24
x (1) r()X()< K@) @4
with time-dependent carrying capacity K € C(I,R"), time-dependent
growth rate r € C(I,R*), and positive initial condition x(¢,) for 7, € I.
Then, x(t) > 0 for all + € I and the substitution u = )1—( transforms (24)
into the linear differential equation

1))

'(1) = —r(tu(t L. 25
u (1) r()u()+K(1) (25)
In the case when r > 0 and K is periodic in the classical sense with
period @ > 0, then (24) has a unique w-periodic solution X that is
globally attractive [22]. In fact, this result, which corresponds to the
so-called first Cushing—Henson conjecture, originally formulated for the
discrete Beverton-Holt model, was proven in [22] to uphold for the
time-scales analogue of (24). More precisely, the authors showed that
the dynamic equation

x4 =rx°® <1—L> (26)

with r > 0 and K(t + w) = K(t) for t € T, where T is an w-
periodic time scale, has a unique w-periodic solution. Furthermore, the
average of this w-periodic solution is strictly smaller than the average
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of the w-periodic carrying capacities, implying a deleterious effect of a
periodically forced environment [22]. This is also known as the second
Cushing-Henson conjecture.

Although these conjectures were originally formulated for the dis-
crete Beverton-Holt model, they also remain true for the continuous
logistic growth model. That is, if K is w-periodic (in the classical sense)
and r is constant, then there exists a unique w-periodic solution that
is globally attractive for positive initial conditions. Furthermore, the
introduction of a periodic environment is deleterious for the species.
These results immediately follow from (26), which contains (24) if
T = R and the Beverton-Holt model if T = Z. Note that (26) allows
the construction of the logistic dynamic equation on the quantum time
scale, T = ¢ = {1,4,42, ...} for ¢ > 1. However, the result in [22]
cannot be readily applied since 4™ is not a periodic time scale. Thus,
the formulation of the Cushing-Henson conjectures on quantum calcu-
lus required already a nonstandard definition of periodicity [31-33].
More recently, equipped with a definition of periodicity for isolated
time scales introduced in [13], the interplay between the discrete and
continuous logistic model was able to be continued. More precisely,
in [23], the Cushing-Henson conjectures were extended to a general
discrete space, so-called isolated time scales. With our introduction
of v-periodicity, we return to the continuous case and advance the
discussion of the Cushing-Henson conjectures on the continuous time
domain.

4.1. First Cushing-Henson conjecture

To extend the first Cushing-Henson conjecture to (24), we consider
(24) with the additional assumptions:

N
—+Vr=r, (H1)
v

() -%

Theorem 30 (Existence of a unique v-periodic solution). Consider (24) with
(H1) and (H2) on I. If E,(v(ty), o) > 1 for t, € I, then there exists a unique
positive v-periodic solution of (24), given by

wi) -
(1) = A < / e,(s,z)% ds> , 27)

where A = E,(v(ty),t)) — 1 > 0.

Proof. Note that, by Lemma 17 and the assumption (H1), E,(v(t),
to) > 1 implies E.(v(z),t) > 1 for all r € I. Since x(¢) > 0 for all 7 > ¢,
whenever x(zy) > 0, we may apply the transformation u = i to (24), to
obtain (25) with its solution given by

r(s)
K(s

t
u(t) = e_,.(t, tp)u(ty) +/ e_.(t,s)ds, to€I. (28)
)

If X > 0 is a v-periodic solution of (24), then u = % satisfies

V (Out) = a(v(t)) = e_ (V(1), to)u(ty) + o ﬂe (v(1), s)ds

- = C—r 240 0 0 K(S) —r ’

v(t)

= e ((t), D(t) + e_, (1), 1) [ ;;(ss))e_r(t, 5)ds.
Solving for u(r) yields
_ 1 YO p(s)
w0=5 [ ge s 29
where

VO —e(v1),1) (H1) _

A= o E.(v(t),H)—1 = E,(v(ty),15)— 1 > 0. (30)

It is left to show that (29) satisfies (i) ¥'(f) = —r(u(t) + #’j} and (ii)
VIOu(t) = a(v(1)).
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Claim (i) follows after recalling that E,.(v(¢),7) = A+ 1 and therefore

()
7 = —{ O, o' e - e, r)+/ 2 (Lo 19) d }

K(v@) ™ K@ ™ K(s) \dr "
@2 1 [ r@® 0} YO (s)
= —{m(/1+1)—1<(t)}—r(t)z/l XGs )ef,(t s)ds
;(()) D).

To show (ii), we calculate

vov(t) F(S)
u(v(n) = Ko

'(t) N(t) o (0, 5)ds

_ YO p(w(s))
Y0 /t K((s)) e_ (v(t), v(s))V' (s)ds

v(t)
g /, 1r<(<vv((ss)))) e, (V(s), )e, (s, De, (1, vtV (5) ds

@ 1 [ )

AL KB
v(t)

= % / I’{‘(SS)) e,(s,1)ds = u(),

because E,(v(t),7) is independent of r € I. []

1
E.(v(s), 5)e, (s, ’)m @

Although the Cushing-Henson conjectures were originally formu-
lated for the discrete Beverton-Holt model based on experimental
data [19], we may still fit the provided discrete data to its continuous
analogue that we, as argued earlier, consider to be the logistic differ-
ential equation. Moreover, our generalization of periodicity allows us
to study the existence of v-periodic solutions even in the case when the
coefficients are seemingly constant, which would have previously been
referred to as 1-periodic. As an example, we fit the parameters r and
x(0) to the experimental data set (Replicate [19, Culture #13 in Table
1]). The fitted solution is, see Appendix A.1,

e K%
20 = & 2(0) = 191.3611, #=0.0163, K =729.
- x(0) + e”x(O)
By choosmg
V(1) = vy — log (1 + v, (e = 1)) 31)
with
Vo = 25, v =e™ (x(o)( Mo 1)+ 1) ~0.7527, (32)

we can show that the fitted solution 2 is also the unique v-periodic so-
lution given in (27). If we had chosen different v, and v,, then another
solution would have been the corresponding v-periodic solution, see X,
and X, in Fig. 1(a) for such examples.

Although the experiments in [19] did not consider the case of
decreasing resources, we could now use simulations to study the effect
on this (fitted) species if resources continuously decrease. We assume
that such decrease results in a corresponding continuous decline of the
carrying capacity, i.e., K(t) = X fort> 1, where o € (0, 1] captures

the speed of decline. We choose the constant K such that on average
(over the time frame of collected data), the average of K () for oy =1

Ky =R =

is identical to the optimized K-value K = 729, i.e., % /1 -

729. Similarly, we assume that a decline in resources also results 1n a
corresponding decrease in the inherent growth rate r so that r(r) = o
where again o, € (0, 1] determines the speed of decrease due to reduced
resources, ¢ > 1, and 7 is chosen such that the average of r(t) over

the data set corresponds to the previously fitted constant # = 0.0163,
. fl ; dt = 0.0163. The solution to (24) for ¢ > 1 is then given by

1% Tx;
x(t) = o -1 ’
1+ x) =K —(or +1 — 1)
Ko, (Fo; S
where x; = x(1) = X(0) is the initial population size. The solutions

for two different choices of 6y and o, are plotted in black in Fig. 1(b).
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We note that although the behavior of the two solutions is similar, the
slowing down of the impact of decreasing resources (i.e., 6, = o = 0.8)
results in higher population levels.

The corresponding v-periodic S(l)lutions for these two parameter

1 1

sets, where v(r) = 2!+ + 1)!*"r' is motivated by Example 33,
are plotted with their respective shapes in red. For small s-values,
these solutions exceed 1000 but decrease monotonically. It would be
interesting to investigate experimentally how fast populations, that can
be modeled using the logistic differential equation, converge to this v-
periodic solution in the case of such decreasing resources. This would
require an experimental set-up in which the resources are continuously
decreasing.

Our new formulation of periodicity can also be exploited to relax the
condition of constant coefficients. To account however for some of the
observed variation (see orange data points in Fig. 1a), one can relax
the conditions of constant model parameters. Consider for example a
constant K but a piece-wise linear growth function, to account for
example for a specie’s intrinsic evolutionary trait processes. That is, we
consider r(t) = r, + W(t — |t]) for t € (t,_1,t,,1)- This choice of
growth rate allows, for example, to perfectly describe the observed date
by choosing r = (r|, ..., ry) such that it solves the matrix equation,

a ((K—xo)xl )
Xo(K=X1)

1100 .. 00
(K-X1X,
o000l Fm(gEsE) | 33)
0000 .. 01 (K=Xy_) X
In ( Xn_1(K—Xy) )

where X; are the observed (biweekly) data points for i € {0,1,..., N —
1}, representing the population at time #,; (see details in Appendix A.2).
Alternatively, one may determine values for r|,...,ry using an opti-
mization problem that minimizes the error to the data points, i.e., min-
imizes Zijial(x(tm-;r) - X,-)z, subject to conditions (H1) and (H2) to
ensure the existence of a v-periodic solution. Note that for constant K,
(H2) reads as r¥ = r, so that if (H2) holds, (H1) can be written as

% +Vr=r, ie., " =1 =V).

Solving this differential equation for V' for a piece-wise linear r as
described above, gives, for t € (t,_;.1,,1),

' J )
v(t) = v(t,_) +/ . T n-l ds,
4

I e D (S+’n—|))(1 — U, )+ V()

where v(7,_;) and v/(t,_,) are obtained inductively and v(t,) = v(0)
and v/(t;) = v/(0) can be chosen freely. Details of this calculation are
provided in Appendix A.3.

Other functional forms of r could have been considered. As long as
K is constant, a suitable v can be found in the same way, that is, by
solving the y' = r(t)y(1 — y), where y = V/, and then integrating the
solution to obtain v(t) = f y(s)ds. Although beyond the scope of this
manuscript, exploring computationally and analytically the existence
of such functional forms remains an interesting future avenue.

Lemma 31. Consider (24) with (H1) and (H2) on I. Suppose there exists
to € I such that E,(v(ty),ty) > 1. If limsup,c; K(s) < oo, then the unique
positive v-periodic solution of (24) is bounded.

Proof. The unique v-periodic solution x of (24) can be expressed as
the reciprocal of (28), that is,

X(t)

e_(t,19) +X(t0) /;, 1’<<(5)) (t.5)ds

x(t) =

Since x(t;) € (0,00) and e_.(1,1;) > 0, it suffices to show that

lim,_ o /! I’j(”) e_,(t,s)ds > 0. Let KM :=limsup,.; K(s). Then

/ro 1r<(<)> e (t.s)ds > —/ r(s)e,(s,1)ds = —<1-er<’0”>>
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a) Fitted and v-periodic solutions
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b) Simulated impact of decreasing resources
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Fig. 1. (a) The orange dots refer to the data points given in [19, Table 1]. The fitted solution % with constant parameters is also the v-periodic solution x given by (31) with (32).
If we chose v, =25 and v, =0.73 in (31), then the unique v-periodic solution is X, and for v, = 0.77, the unique v-periodic solution is x,. Note that the curvature is not identical

for these v-periodic solutions. (b) The solution x of (24) for r = Git and K = ”il

are plotted in blue. The red curves are the associated v-periodic solutions x with v(r) given in

Example 34 for D, =2 and D, = 1. Curves with open circles corres’pond to the lgair (0,,0x)=(1,1) and filled circles correspond to the pair (0.8,0.8), representing a reduced speed
of decline, hence higher population levels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

which is positive because e, (t,.7) = e_,(t, 1)) < 1 for t > t,, completing
the proof. [

Theorem 32 (Global Asymptotic Stability). Consider (24) with (H1) and
(H2) on I. Suppose there exists t, € I such that E,(v(ty),ty) > 1. If
limsup,c; K(s) < oo, then the unique v-periodic solution x of (24) is
globally asymptotically stable for solutions with positive initial conditions.

Proof. After resubstituting u = x~! in (28), a solution to (24) can be
expressed as

- X0
x(0) = 7 ") 4
e_,.(t,t9) + x( /fo e_.(t,5) X ds
with initial value x(fy) = x, > 0. The v-periodic solution can be

expressed equivalently with the initial condition

_ _ ) p(s) -
Xg =x(tg) = A </[0 KG) e.(s,1) ds> .

Then,

xpe_.(t, 1)) — Xpe_,(t, 1)

[ r(s) — r(s)
(e (1, 19) + Xo fy e, (1, 5) g% ds)e_, (1. 10) +Xg [y e (1,5) 55 ds)

[x(0) —x@)| =

e_(t,19)(xg — Xg) @

T B =
(e_,(1,19) + xq /’0 e_.(t,5) l;(;) ds) o

1

t r(s)
1+ xq /’0 e_.(ty,s) X0 ds

Xo

IA

*Ixo = Xol,

where the right-hand side can be made arbitrarily small for sufficiently
large ¢ because

! r(s) ! r(s) 1
/% e_,(to,s)K(S) ds :/to e, (s, ’O)W ds > X7 (e (t.19)—1).

This completes the proof. []

Theorems 30 and 32 confirm the First Cushing—Henson Conjecture for
the nonautonomous model (24) with the generalization of periodicity
defined in (4). Theorems 30 and 32 are consistent with the results
obtained in [22] for periodic time scales, after choosing the specific
time scale T =R and v(t) =t + w.

Example 33. Consider the logistic model

/= _ X
x =r(t)x <1 K(t)> N

with

t>1,>0, (34)

¥, K,
r(t) = 7" K@) = 7"

for ry, Ky > 0 and ¢ € I = [1y, ). By construction, r, K € C(I,R) and
(H2) is satisfied for any v : I — 1. ]It is not hard to show that (H1) is

satisfied for v(r) = D, (1'*"0 + D,) ™0 > 0 for any D, D, > 0, where

p!™no v(t) 147, t )"0
1 to=p 0 (%) > 0 for t € I. Furthermore,

Vl+r0(t) 1
"0 v n "o "o
E@.y=D" (L) " Fa = pho (L YO\ _ pien.
! v(1) ! V(1) t 1

For D, > 1, there exists, by Theorem 30, a unique positive v-periodic so-
lution of (34) that is given by (27). Furthermore, since lim sup,c; K(s) =
? < o0, the unique v-periodic solution x is globally attracting solutions
V\?ith positive initial conditions, by Theorem 32. Fig. 2(a) visualizes
the behavior of solutions for different initial conditions, as well as
their convergence to x (see red curve). Although X(¢) is decreasing
in t, see Fig. 2(a), x is v-periodic. Fig. 2(b) and (c) visualize the
property of v-periodic functions of translation invariance of integration.
More precisely, (b) shows that only for the v-periodic solution, the
integral function x increases to the same value (namely 1, due to
the normalization constant C) in each interval (vk(1),v¥*1(1)) for all
k € N, and where v* denotes the composition of v with itself k-times.
This behavior implies that [ ii:;(l)
area underneath the curve from v¥(1) to v¥*!(1) remains constant. This
is highlighted in (c), where, despite the decrease of the v-periodic
function, the area underneath x remains the same across different k
(here: k =0, 1,2,3; colored in different shades).

Vi) =

X(s)ds remains constant, i.e., the

4.2. Second Cushing-Henson conjecture

We define H € C'(I,R) to be the solution to the linear functional

equation
H®)+In(V' (1) = H(®). (35)

By [34, Theorem 2.1], see also [30, Theorem 2], if v satisfies addition-
ally that there exists ¢ € I such that

V) - DE-1) >0, telt#¢

v - EE-1) <0, tel,t#¢&,

then there exists a unique H € C(I,R) to (35). Note that if H is

differentiable, then h(t) := H'(¢) satisfies E,(v(1),7) = 1, where E, is
defined in (12), i.e.,
Epn,0) =V (e (v0), 1) = V(ek " HOd = 1, (36)

If there exists he C'(I,R) that satisfies (36), then, by Lemma 17, h
satisfies (H1).
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a) Dynamics of solutions

('f (s)ds ¢) Constant area for z(t)
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Fig. 2. Plots are based on (34) with r, =5, K, = 100, D; = 2, D, = 1. (a) Dynamics of the solution to (34) for different initial conditions x,. All solutions, as predicted in
Theorem 32, converge to the v-periodic solution X (red solid curve). (b) Visualization of the periodic property (9) using the function «(¢) := C A ' f(x)dz for t € (s,v(s)], where

s = k(1) for some k € Ny and C = flv“) f(2)dz. If f is v-periodic, then « is strictly increasing with «(v¥(1)) = 0 < «(r) < x(vVF*!(1)) = 1. Note that only X (red curve) satisfies this

condition. (c) Visualization of the area preserving property of v-periodic functions. Since % (red solid curve) is v-periodic, [

e+ (1)

k) X(s)ds is constant for all k € N. That is, the areas

highlighted in shades of blue have all the same value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Note that if v(f) = t+w, then (36) reads as e, (t+w, t) = 1, requiring h
to be an w-periodic function such that ft(t)om h(s)ds=0fortye I cR.

2
Example 34. Let I = (0,00) C R If v(t) =t + DV +1+(2) >0 for
D > 0, then v satisfies
1+ v(0)

Toe ——=>0. (37)

O

Since

£/ v(t)
Vit+vo =V'(t) = exp 1 / 1+ ds
Vit 2Ji
= exp {/ h(s) ds} = ey (1, v(1)),
v(t)

for h(r) = D ]H) . Thus, h < 0 satisfies (36).
Changing v(r) = ((1+t)i +3)§ —1, then V(t) = EELVET R /ETINN
(0343 VPO
0. Now, (36) is satisfied for h= > 0.

2(1+1) +r)

To formulate an analogue of the second Cushing-Henson conjecture,
we strengthen our assumption (H1) on r by assuming that

(r—h)(s)e,(t, s) = (r—h)(@), for all s,r eI, (H1%)
where £ is given by (36).
Lemma 35. Let h be given by (36). If r satisfies (H1*), then r satisfies
(H1).
Proof. Let r € C(1,R) satisfy (H1*) on I. Then, for s = v(z),
(r=R)(v(1) e, (t, v(1)) = (r—h)(t)

——

Vi)

so that ¢ = r—h is v-periodic. Thus, by Theorem 16, e,(v(n), 1) is
independent of ¢ and, therefore,

€, (Vtg)s tg) = e,(V(1), 1) = €,(v(1), De_,(V(D),1) = e,(u(1), V(1) = E,(v(1), ).

Hence, by Lemma 17, r satisfies (13) and therefore (H1), completing
the claim. [

Proposition 36. Suppose there exists h € C(I,R) satisfying (36). If (H2)

holds on I, then, p(1) := K((t’))eh(t 1o) € P,(I).

Proof. We have

VO = V(1) =D 2 K@,

( o) 1O w'= D)

(e, (v(), ey (t, 1)

@6 K1)
r(t)

completing the claim. [

——e,(1, 1) = p(0),

Proposition 37. Suppose there exists h € C(I,R) satisfying (36). Let
r € C(I,R) satisfy (H1). Then, for ¢ :=r—nh,

e, (V(s), v(tp)) = e,(s, ). (38)

Proof. We calculate

e, (V(s), v(19)) = e, (V(s), 5)e, (s, Tg)e, (1, v(Ty))

=e,.(v(s), S)ey(s, v(s)e,, (s,tp)e,.(to, v(to))eh(v(to),to)
L e, (U(s), )V (5)e, (5, to)e, (1, Vitg) ——
_r
E,(v(ty), 1)

’(I )
= E,((s5), )e, (s, 1p)

(H1)
= e,(s,1p),

completing the claim. []

Theorem 38 (Second Cushing-Henson Conjecture). Consider (24) with
(H1*) and (H2) on I. Suppose there exists h € C(I,R) satisfying (36) such
that o(t) := r(1)—h(t) > 0 for all t € I. Assume that there exists t, € I such
that E,(v(ty),ty) > 1. Then, the unique positive v-periodic solution X of (24)
obeys

1 v(tg) 1 v(tg)

m . X(s)ds £ ——— Vo =i G(s)K(s)ds, (39)
where
Gs) = (1)

_ >
@(tg)+h(s)e,(ty, s)
Equality in (39) holds if and only if % is constant.

Proof. We will apply the weighted Jensen inequality to the concave
function F(z) = z~!, that is,

1 < 1 / w(s, 1) s
[P w(s,ny(s,0ds (2wt ds)z . Y0

for weights w(s,t) > 0. Here, we choose

r(s)
@(s)K(s)
for ¢ = r—h > 0. By this choice of w(s,7) and y(s, ), we have

w(s, 1) 1= ey(s,Ne(s) >0, V(s 1) = e,(s,1e,(t, )

70) v() 36 , (30)
/ w(s,t)ds:/ e (5, Np(s)ds = e, (v(©),) =1 = V(e ,(v(t),) -1 = 4
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and
w(s, 1) _ ent.)e, (D7) 11y @(e,(s. e(s)
Vs r(s) O
_ p(ey(s.1) @(s)e(ty, s) (H1%) @(eg(s, 1) @(ty)
- r(s) ' e, (tp, ) - r(s) ' ey(to,s)
= @(tg)B(s)p(1)e, (s, 1),
where B(s) := K e, (s, 1y). Note that by Proposition 36, g € P,(I). The

(5)
application of the weighted Jensen inequality gives then

vito) 27
/ 0 dt 2
‘o

v(to) 1
. s
fo ftv(t) w(s, )y(s,1)ds

v(tp) 1 v(t) w(s, 1)
g A
% (ft“’) w(s,pds2 Ji (s

v(tg) v(t)
=M/ 0/ ﬁ(s)(p(t)e(p(s,t)dsdt
A Sy '
v(tg) s
o) { / " bs) (t)e, (s,1)dt ds
4 fo To

V3 (tp) v(tp)
+ / ﬂ(s)/ (p(t)eq,(s,t) drds
v(ty) v=1(s)

@(ty) V(o)
= TO {/{0 B(s)(e,(s.19) — 1) ds

V()
+ / B(5)(e, (5, vTH(9) — e, (s, v(ty))) dS}

v(tp) 1
_—
/t MO (5,12 g
0 . en(s, XG) s

dt

IA

dsdr

(10)

v(tg)
= @ {/ro B(s)(e,(s,19) — Dds

v(ty)
+ / B(9))(e,(V(s), 5) — e, (vV(s), vtV (5) dS}

T
v(ty)
@ @ { / " Bs)ey (.10~ 1)
To
+ BV (5)ey (V). 5) — e, (s.1)) ds }

v(ty)
=4 @ / ’ B(s) (=1 + €, (v(s), 9)) ds
fo

N ——
i
v(ty) v(tg)
= (p(to)/ B(s)ds :/ G(s)K(s)ds,
1o 1o
where
Gls) = o) o(to) (H1Y) o(to)

B r(s)ep(tg, s) B (@(s)+h(s))ey(ty, ) @(tg)+h(s)ep(ty, s)

Note that 0 < r(s)e,(s, ty), ¢(ty) implies G(s) > 0 for all s € I. To show
the second statement, we recall that the Jensen inequality is an equality
if and only if y(s,1) is s-independent. Since

- ) s ()
YN =09 TGk = O I TOKE T o®entt 9KG)
H1)  r(s)
T eK(s)

the claim follows and the proof is complete. []

Example 39. In the classical case, i.e., v(t) =t + w, f € P,(I) implies
ft+w)= f(@) fort € I and h = 0 satisfies (36). Then, condition (H1*)
requires r to be constant and (H2) implies K to be w-periodic in the
classical sense. Thus, r € R* and K € C(I,R) with K(t + w) = K(t) for
all ¢+ € I satisfy the conditions of Theorem 38 and we can conclude, by
Theorem 38 and (39),

1 1p+w 1 tot+w
/ x(s)ds < — / K(s)ds,
 Jy w Jy

0 0

(40)
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where we used that G(s) = —2% ___ _ | since h = 0. Thus,
@(tg)+h(s)ep(tg.s) A

for v(f) = t + w, Theorem 38 collapses to the continuous analogue

of the second Cushing-Henson conjecture. Equality then only holds

if K is constant, again implying a deleterious impact of a periodic

environment. This is consistent with the results in [22] for the periodic

time scale T = R.

Remark 40. It is worth noting that the second Cushing-Henson
conjecture for our general concept of periodicity is formulated using
weighted averages rather than averages, that is, “the average of the
periodic solution is at most equal to the average of the weighted average
of the carrying capacity”, where the weight function is given by the
function G that depends on the value r(¢;) and the function v through A.
Furthermore, if 4 = 0, then G(s) = 1 and if h<0, then G(s) > 1, allowing
for beneficial effects on the population after introducing periodicity.
Else, for h > 0, G < 1 so that the upper bound is even smaller as in
the traditional formulation suggesting an even stronger deterioration.
In fact, Fig. 3 illustrates an example where the moving average of the
v-periodic solution (dashed orange curve) remains above the moving
average of the carrying capacities (dotted purple curve) in the left panel
or intersects, on the right panel. Note that since % is constant, equality
holds in (39). Thus, the orange dashed curve equivalently represents
\v(tl)—rl /tv(’) G(s)K(s)ds. Since the dashed curve is the (non-weighted)
average of K, the comparison of the dashed orange and the dotted
purple curves reveal the relevance of the underlying time domain. The
classical description of the second Cushing-Henson Conjecture would
have predicted that the average of the periodic solution (orange curve)
would always remain below the average of the purple curve.

2
Example 41. Let I = (0,0). Consider v(t) =t + Dy/1+1+ (g for
D > 0 and ¢ € I. Then, by (37), v is strictly increasing for + € I. By
Example 34, h(r) = —L_ -0 satisfies (36) and

2(1+1)
§ VIi+
e,(t,s) = exp 1 A+ tde } = s’ s,tel.
" 2 Ji i+t
2rg 1 2rg

Choosing r(t) =

1
s 20 \/E+h(t)’ then r(7) > 0 for ry > n and

@(t) > 0 and we get for s,t € I,

2r, \/m ) 1
=2r
Vi+s V14t 0\/]+t

so that r satisfies (H1*). Choosing K(t) = K,r(r) satisfies (H2). By
Theorem 38, (39) holds for

(r=h)(s)e,(t,s) =

= (r=h)®),

G(s) = @) = \/Ero = droVi+s > 1 sel
@()+h(s)e,(1,s) 1 Vi _ ’ ’
h V2ry - T 4rg\/1+5s—1

Fig. 4 illustrates (39) for different values of r,, comparing the upper
bounds of the weighted average f,vm G(s)K(s)ds to the classical average
/tv(’) K(s)ds. Note that since G(s) > 1, the weighted moving average
on the right-hand side of (39) (black curve with stars) is bigger than
the traditional average (green dotted curve). Furthermore, since K(¢) =
Kyr(), é is constant, so that Theorem 38 predicts that the moving
average of x (left-hand side of (39)) is indeed equal to the moving
weighted average. This is visualized by the fact that the dark red solid
curve is equal to the dashed curve with black stars.

5. Discussion

In this work, we introduced a novel definition of periodicity with re-
spect to a strictly increasing and differentiable function v € C(I,R). We
say a function f is v-periodic provided it satisfies the functional equa-
tion (4). The set of v-periodic functions, for given v, can be determined
by solving a functional equation that is related to the known Schréder
equation. Instead, the function v, with which respect a given function f
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60

—7()
-t mjrls f .!;P“: x(s)ds

’]' , j;"“lf(s‘)(ls 1

vit)

50 |

40 .

30

20

10

time

Fig. 3. Behavior of the v-periodic solution and moving averages for (34) with r, =5, K, = 100, D, = 2. Left: D, = 1, consistent with the parameters in Fig. 2. The moving average
of the v-periodic solution remains above the moving average of the carrying capacities, indicating a beneficial impact of a v-periodic environment. Right: D, = 5. The effect of
introducing a v-periodic environment changes over time, indicating however eventually a positive impact. Note that since K(f) = ¢ - #(t) for constant ¢ > 0, equality holds in (39).

220

—7(t)

— e %

_____ F“l—” j;"“l‘ K(s)ds
+ i e G K(s)ds| |

vit)

200

(s)ds

180

160 |
140
120

100

80
10

80

— T (1)
wr]: T j\("”:‘ x(s)ds

————— . . f"‘:“K(ﬁ)ds

() Jt

+ i Y Gs)K(s)ds| |

70

607

50 '

401

307

20
10

time

Fig. 4. Behavior of X and the weighted and nonweighted moving averages based on Example 41 with K, =50, D, = 2. Left: ry = 3; Right: r, = 1.1. By (39), the moving average
of X is equal to the moving weighted average since equality holds in (39). For r, = 1.1, right panel, the traditional nonweighted average is not an upper bound, justifying the

necessity of the weighted upper bound with weights G(s).

is periodic to, is obtained by solving a first-order differential equation.
If v(t) = t + w, the definition coincides with the classical definition of
w-periodicity, that is, f(+w) = f(r) for all t € I, where f : I —» R. Our
definition of v-periodicity guarantees the classical translation invariant
property of integrals of periodic functions, formulated in Theorems 7
and 9. In Section 3, we investigated the existence and uniqueness
of v-periodic solutions to linear homogeneous and nonhomogeneous
differential equations. For v(t) = t + w, our obtained results are con-
sistent with the classical theorems for periodic differential equations.
More specifically, we identified conditions that guarantee the unique
existence of a v-periodic solution for a nonautonomous differential
equation. In Section 4, we applied the concept of v-periodicity to
the logistic growth model. We formulated and proved the Cushing-
Henson conjectures that address the impacts of a periodically forced
environment for the logistic differential equation. Our formulated first
Cushing-Henson conjecture provides conditions for the time-dependent
model parameters to guarantee the existence, uniqueness, and posi-
tivity of a globally attracting v-periodic solution. This implies, that
even though the model parameters may not be periodic in the classical
sense, one may still be able to classify the global attracting solution
using the generalization of periodicity. We also extended the second
Cushing-Henson conjecture that, originally, identified a deleterious
effect of introducing a periodic environment for the discrete Beverton—
Holt model. For model parameters satisfying the modified conditions

11

using v-periodicity, the average of the globally attracting v-periodic
solution is bounded by a weighted average of the carrying capacities,
so that the effect of the introduction of a time-dependent environment
depends on v and may potentially be beneficial.

We also highlighted the relevance of v-periodic functions in the
context of the Cushing-Henson conjectures by revealing the existence
of a v-periodic function despite a constant environment that was mod-
eled with constant coefficients. Interesting, but beyond the scope of
this manuscript, would be to experimentally explore the impact of
a v-periodically changing environment on a population that grows
logistically. For example, the Cushing—Henson conjectures were orig-
inally formulated for the discrete Beverton-Holt model and were based
on collected data of a flour beetle population that was exposed to a
periodically changing environment. Our new periodicity concept would
now allow for the set-up of a v-periodically changing environment,
where v(t) # t + w, that is, v-periodic functions are not periodic in the
classical sense.
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Appendix

A.1. Data fitting

Consider [19, Culture #13 in Table 1] and let X (i) be its data points
for the population at week i (i = 0,...,34). Using “fminsearch” in
Matlab, we find the value £(0) and 7 that reduce the residual, defined
by
35

(X() = x(t;)%

i=0

res = w

where x is the solution to the logistic differential equation, #; = i +2
(to match the biweekly recorded data points). The optimization-weight
® was chosen to be 0.8 to aid the fminsearch-algorithm in finding
reasonable parameter values. For the same reason, we chose K =
1.5max; X (/). Despite these choices, similar values are obtained after
relaxing these constraints.

A.2. Special case of a piecewise linear growth rate

Consider r(t) = r, + W(t — |t]) for t € (t,,,,,), where t, are
the observed table points for n = 0,1,..., N. For [19, Culture #13 in
Table 1], N = 34. Then the solution to the logistic differential equation
x' = r(t)x (1 — %) with constant K can be expressed for ¢ € [t,,1,,,) as

x(t) = Kx(,)

OB (K _ x(1,)) + x(1,)
Kx(t,)

e /,; rn+(r"+]27_r")(:—tn)d:

(K —x(1,) + x(t,)
Thus, for r =1¢,,,, we have

Kx(t,)
e~rFr)(K = x(t,) + x(1,)

Hence, we could choose r; such that x(¢,,,) matches the observation for
all n. Then,

x(tn+2) =

KXy
e (K — X )+ Xy
which can now be solved for r,_; + r;, resulting in
(K — X)Xy
(K= X)X > '

resulting in the matrix structure (33).

X, =

Fr_1 71, =ln(

A.3. Calculations to determine v for constant K

Let K be constant. Then, (H2) is satisfied if »* = r, which allows to
rewrite (H1) as

1" ,
— tvr=r,
%

12

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 186 (2024) 115139

i.e., a logistic differential equation in v/,
Vi=r/(=V).
The solution is therefore

V(t) = Yo

/
- s Yo = U'(19).
O =y 4y,

Integrating this expression gives

t y()
v(t) = v(ty) + v
fo e— f’U r(t) r(

ds.
1= y9)+ Yo
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