Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/51900
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_MappingStainsFlat.pdf11,78 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSantos, Lara Monalisa Alves dos-
dc.contributor.authorLescano, Leonardo Rabero-
dc.contributor.authorHiga, Gabriel Toshio Hirokawa-
dc.contributor.authorZanoni, Vanda Alice Garcia-
dc.contributor.authorSilva, Lenildo Santos da-
dc.contributor.authorAlvarez Mendoza, Cesar Ivan-
dc.contributor.authorPistori, Hemerson-
dc.date.accessioned2025-03-17T12:33:10Z-
dc.date.available2025-03-17T12:33:10Z-
dc.date.issued2024-12-18-
dc.identifier.citationSANTOS, Lara Monalisa Alves dos et al. Mapping stains on flat roofs using semantic segmentation based on deep learning. Case Studies in Construction Materials, [S. l.], v. 22, e04106, 2024. DOI: https://doi.org/10.1016/j.cscm.2024.e04106. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214509524012580?via%3Dihub. Acesso em: 11 mar. 2025.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/51900-
dc.language.isoengpt_BR
dc.publisherElsevier Ltd.pt_BR
dc.rightsAcesso Abertopt_BR
dc.titleMapping stains on flat roofs using semantic segmentation based on deep learningpt_BR
dc.typeArtigopt_BR
dc.subject.keywordAprendizagem profundapt_BR
dc.subject.keywordInspeção predialpt_BR
dc.subject.keywordDronespt_BR
dc.subject.keywordVisão computacionalpt_BR
dc.rights.licenseThis is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.cscm.2024.e04106pt_BR
dc.description.abstract1Moisture stains indicate ongoing degradation processes and may reveal areas of the roof slab where water infiltration occurs, compromising the performance and durability of the building system. During inspections of roofing systems, an inspector’s field of vision differs from that of drones during overflights. As a result, traditional inspections might not always detect the presence and severity of stains, making maintenance on flat roofs a complex task. In this context, this experimental study aims to analyze deep learning-based semantic segmentation with images obtained from drones to map and monitor damp patches during automated building inspections of flat roof systems. The research tested two convolutional neural networks for semantic segmentation: the Fully Convolutional Network (FCN) with a ResNet50 backbone and DeepLabV3 with a ResNet101 backbone, as well as a transformer-based deep artificial neural network called SegFormer with a MiT-B1 backbone. We evaluated three optimizers for each model—Adam, Adagrad, and SGD—along with learning rates of 1e-2, 1e-3, and 1e-4. The models were compared using four performance metrics. The FCN, optimized with Adagrad at a learning rate of 1e-2, showed the best results. The average metrics obtained in this case were as follows: precision: 79.69 %, recall: 67.81 %, F-score: 73.09 %, and Intersection over Union (IoU): 57.70 %.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8022-2513pt_BR
dc.identifier.orcidhttps://orcid.org/0009-0004-3125-9696pt_BR
dc.identifier.orcidhttps://orcid.org/0009-0006-6771-0076pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-2629-4214pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-5099-6123pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-0893pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-8181-760Xpt_BR
dc.contributor.affiliationUniversity of Brasiliapt_BR
dc.contributor.affiliationDom Bosco Catholic Universitypt_BR
dc.contributor.affiliationDom Bosco Catholic Universitypt_BR
dc.contributor.affiliationUniversity of Brasiliapt_BR
dc.contributor.affiliationUniversity of Brasiliapt_BR
dc.contributor.affiliationUniversity of Augsburg, Centre for Climate Resiliencept_BR
dc.contributor.affiliationSalesian Polytechnic University, Environmental Research Group for Sustainable Development (GIADES)pt_BR
dc.contributor.affiliationDom Bosco Catholic Universitypt_BR
dc.contributor.affiliationFederal University of Mato Grosso do Sulpt_BR
dc.description.unidadeFaculdade de Arquitetura e Urbanismo (FAU)pt_BR
dc.description.unidadeDepartamento de Tecnologia em Arquitetura e Urbanismo (FAU TEC)pt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Civil e Ambiental (FT ENC)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Arquitetura e Urbanismopt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.