Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/6360
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2009_JoaoMarceloGdeAlmeida.pdf401,52 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorKrassilnikov, Alexei-
dc.contributor.authorAlmeida, João Marcelo Gonçalves de-
dc.date.accessioned2011-01-04T22:32:09Z-
dc.date.available2011-01-04T22:32:09Z-
dc.date.issued2011-01-04-
dc.date.submitted2009-12-11-
dc.identifier.citationALMEIDA, João Gonçalves de. Algumas álgebras de Lie sem base finita para suas identidades. 2009. vii, 67 f. Dissertação (Mestrado em Matemática)-Universidade de Brasília, Brasília, 2009 .en
dc.identifier.urihttp://repositorio.unb.br/handle/10482/6360-
dc.descriptionDissertação (mestrado)-Universidade de Brasília, Departamento de Matemática, 2009.en
dc.description.abstractSeja K um anel associativo, comutativo e com unidade e seja LhXi a ´algebra de Lie livre sobre K, livremente gerada por X = {x1, x2, . . .}. Seja f = f(x1, . . . , xn) 2 LhXi e seja G uma ´algebra de Lie sobre K. Dizemos que f = 0 ´e uma identidade em G, se f(g1, . . . , gn) = 0, para todo g1, . . . , gn 2 G. Dois sistemas de identidades {ui = 0 | i 2 I} e {vj = 0 | j 2 J} s˜ao equivalentes, se toda álgebra de Lie sobre K satisfazendo todas as identidades ui = 0, satisfaz todas as identidades vj = 0 e vice-versa. Se o sistema de identidades {ui = 0 | i 2 I} ´e equivalente a algum sistema finito de identidades, então dizemos que o sistema {ui = 0 | i 2 I} tem uma base finita. Nesta dissertação, demonstraremos que, sobre um corpo de caracter´ıstica 2, o sistema de identidades de álgebras de Lie formado pelas identidades [[x1, x2], [x3, x4], x5] = 0 e [[x1, x2, x3, . . . , xn], [x1, x2]] = 0 (n = 3, 4, . . .) não tem base finita. Provaremos também que, sobre um corpo infinito K de característica 2, a ´algebra de Lie gl2(K) das matrizes 2 × 2 não tem base finita para suas identidades. Finalmente, mostraremos que a álgebra de Lie M, de todas as matrizes 3 × 3 sobre Q com a primeira coluna e a terceira linha nulas, vista como um anel de Lie, não possui base finita para suas identidades. É conhecido que as identidades de M, vista como álgebra de Lie sobre Q, têm base finita. Esta dissertação está baseada nos artigos de Vaughan-Lee, de Krasilnikov e também no livro de Drensky. _________________________________________________________________________________ ABSTRACTen
dc.description.abstractLet K be an associative and commutative unitary ring and let LhXi be the free Lie algebra over K freely generated by X = {x1, x2, . . .}. Let f = f(x1, . . . , xn) 2 LhXi and let G be a Lie algebra over K. We say that f = 0 is an identity in G if f(g1, . . . , gn) = 0 for all g1, . . . , gn 2 G. Two systems of identities {ui = 0 | i 2 I} and {vj = 0 | j 2 J} are equivalent if every Lie algebra over K satisfying all the identities ui = 0 satisfies all the identities vj = 0 and vice versa. If the system of identities {ui = 0 | i 2 I} is equivalent to some finite system of identities, we say that the system {ui = 0 | i 2 I} has a finite basis. In this dissertation, we will demonstrate that, over a field of characteristic 2, the system of identities of Lie algebras consisting of the identity [[x1, x2], [x3, x4], x5] = 0 and the identities [[x1, x2, x3, . . . , xn], [x1, x2]] = 0 (n = 3, 4, . . .) has no finite basis. We will prove also that, over an infinite field K of characteristic 2, the Lie algebra gl2(K) of the 2 × 2 matrices has no finite basis for its identities. Finally, we will show that the Lie algebra M, of all the 3×3 matrices over Q with the first column and the third row with zeros, viewed as a Lie ring, has no finite basis for its identities. It is known that the identities of M viewed as a Lie algebra over Q have a finite basis. This dissertation is based on the articles of Vaughan-Lee and Krasilnikov and also on Drensky’s book.en
dc.language.isoPortuguêsen
dc.rightsAcesso Abertoen
dc.titleAlgumas álgebras de Lie sem base finita para suas identidadesen
dc.typeDissertaçãoen
dc.subject.keywordMatemáticaen
dc.subject.keywordDiferenças finitasen
dc.subject.keywordLie, Álgebra deen
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Matemáticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.