Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/47888
Files in This Item:
File SizeFormat 
JorgeHenriqueBarrosLemos_DISSERT.pdf2,3 MBAdobe PDFView/Open
Title: Análise de séries temporais para previsão da arrecadação do ICMS do Estado de Goiás com o software 'R'
Authors: Lemos, Jorge Henrique Barros
Orientador(es):: Menezes, Rafael Terra de
Assunto:: Imposto sobre Circulação de Mercadorias e Serviços (ICMS)
Receita pública - previsão
Análise de dados
Goiás (Estado) - economia
Issue Date: 26-Feb-2024
Citation: LEMOS, Jorge Henrique Barros. Análise de séries temporais para previsão da arrecadação do ICMS do Estado de Goiás com o software 'R'. 2023. 118 f. Dissertação (Mestrado Profissional em Economia) — Universidade de Brasília, Brasília, 2023.
Abstract: A dissertação tem como objetivo central aprofundar a avaliação de estratégias univariadas de modelagem e previsão da arrecadação do ICMS no Estado de Goiás, utilizando o software R como ferramenta principal de análise, de modo a fornecer aos gestores estaduais um modelo de previsão consistente, que possibilite uma gestão financeira eficaz do Estado. Uma das principais ênfases deste trabalho é o estudo detalhado do algoritmo de alisamento exponencial de Holt-Winters, suas variações e adaptações específicas para a previsão do ICMS. Serão analisadas as características e eficácia dessas técnicas em relação aos dados históricos disponíveis, a fim de identificar suas capacidades e limitações. Também foi utilizada a metodologia de Box-Jenkins, utilizando os modelos autorregressivos integrados de médias móveis (SARIMA). Esses modelos são amplamente reconhecidos por sua habilidade em lidar com séries temporais complexas e fornecer previsões precisas. Após realizar simulações em quatro conjuntos distintos de dados, considerando horizontes de previsão de doze meses, foram obtidos resultados significativos. Para o ano fiscal 2019, caracterizado por uma arrecadação dentro dos padrões usuais, a combinação da série {LOG IGP-DI} com o modelo SARIMA (2,1,1)(1,0,0)[12] demonstrou o desempenho mais destacado. Já para o ano subsequente, 2020, o modelo Holt-Winters Multiplicativo aplicado à série {LOG IGP-DI} revelou-se o mais eficaz. Ao avançar para o ano de 2021, a série {IGP-DI} em conjunto com o modelo Holt-Winters Multiplicativo apresentou os melhores resultados. E, por fim, considerando o ano de 2022, a combinação que proporcionou as previsões mais acuradas foi a série {NOMINAL} associada ao modelo ARIMA[1,1,1]. Nesse contexto, conclui-se que não existe um modelo univariado único capaz de abarcar todas as variações econômicas intrínsecas a eventos inesperados, a exemplo da pandemia de Covid. Dessa forma, torna-se claro que investigações subsequentes devem ampliar seu escopo para abranger modelos multivariados.
Abstract: This master's dissertation aims to delve into the evaluation of univariate strategies for modeling and forecasting the ICMS revenue in the State of Goiás, utilizing the R software as the primary analytical tool. The central objective is to provide state managers with a robust forecasting model that enables effective financial management. A key focus of this work is the in-depth study of the Holt-Winters exponential smoothing algorithm, its variations, and specific adaptations for ICMS forecasting. The characteristics and effectiveness of these techniques will be analyzed concerning available historical data to identify their capabilities and limitations. Additionally, the Box-Jenkins methodology, employing Seasonal Autoregressive Integrated Moving Average (SARIMA) models, renowned for handling complex time series and providing accurate forecasts, was also employed. Significant results were obtained through simulations on four distinct datasets, considering a twelve-month forecasting horizon. For the fiscal year 2019, characterized by revenue within typical patterns, the combination of the {LOG IGP-DI} series with the SARIMA (2,1,1)(1,0,0)[12] model exhibited the most outstanding performance. Conversely, for the subsequent year, 2020, the Multiplicative Holt-Winters model applied to the {LOG IGP-DI} series proved to be the most effective. Moving to the year 2021, the {IGP-DI} series in conjunction with the Multiplicative HoltWinters model yielded the best results. Finally, considering the year 2022, the combination that provided the most accurate predictions was the {NOMINAL} series associated with the ARIMA[1,1,1] model. In this context, it is concluded that there is no single univariate model capable of encompassing all intrinsic economic variations in unexpected events, such as the Covid pandemic. Therefore, it becomes evident that subsequent investigations should broaden their scope to include multivariate models.
metadata.dc.description.unidade: Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE)
Departamento de Economia (FACE ECO)
Description: Dissertação (mestrado) — Universidade de Brasília, Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas, Departamento de Economia, Programa de Pós-Graduação em Economia, 2023.
metadata.dc.description.ppg: Programa de Pós-Graduação em Economia, Mestrado Profissional
Licença:: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.unb.br, www.ibict.br, www.ndltd.org sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra supracitada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
Appears in Collections:Teses, dissertações e produtos pós-doutorado

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/47888/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.