http://repositorio.unb.br/handle/10482/47152
Título : | The double transpose of the Ruelle operator |
Autor : | Cioletti, Leandro Martins Enter, A. van Ruviaro, Ricardo |
metadata.dc.identifier.orcid: | https://orcid.org/0000-0002-8131-2043 |
metadata.dc.contributor.affiliation: | Universidade de Brasília Johann Bernoulli Instituut, Rijksuniversiteit Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands Universidade de Brasília |
Assunto:: | Operador de Ruelle Teoria Ergódica |
Fecha de publicación : | 3-ene-2023 |
Editorial : | Springer |
Citación : | CIOLETTI, L.; ENTER, A. van; RUVIARO, R. The double transpose of the Ruelle operator. Monatshefte für Mathematik, 2023. DOI: https://doi.org/10.1007/s00605-022-01818-7. |
Abstract: | In this paper we study the double transpose of the L1(X, B(X), ν)-extensions of the Ruelle transfer operator L f associated to a general real continuous potential f ∈ C(X), where X = EN, the alphabet E is any compact metric space and ν is a maximal eigenmeasure. For this operator, denoted by L∗∗ f , we prove the existence of some non negative eigenfunction, in the Banach lattice sense, associated to ρ(L f ), the spectral radius of the Ruelle operator acting on C(X). As an application, we obtain a sufficient condition ensuring that the extension of the Ruelle operator to L1(X, B(X), ν) has an eigenfunction associated to ρ(L f ). These eigenfunctions agree with the usual maximal eigenfunctions, when the potential f belongs to the Hölder,Walters or Bowen class. We also construct solutions to the classical and generalized variational problem, using the eigenvector constructed here. |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
DOI: | https://doi.org/10.1007/s00605-022-01818-7 |
metadata.dc.relation.publisherversion: | https://link.springer.com/article/10.1007/s00605-022-01818-7 |
Aparece en las colecciones: | Artigos publicados em periódicos e afins |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.