Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/46883
Files in This Item:
There are no files associated with this item.
Title: Filling a gap in the taxonomy of phyllachoroid fungi : proposition of Neopolystigma, gen. nov., and the new family Neopolystigmataceae
Authors: Guterres, Débora Cervieri
Santos, Maria do Desterro Mendes dos
Furlanetto, Cléber
Pinho, Danilo B.
Barreto, Robert W.
Dianese, José Carmine
metadata.dc.identifier.orcid: https://orcid.org/0000-0002-3902-8487
https://orcid.org/0000-0001-5435-6182
https://orcid.org/0000-0003-0575-0487
https://orcid.org/0000-0003-2624-302X
https://orcid.org/0000-0001-8920-4760
https://orcid.org/0000-0002-9100-0545
metadata.dc.contributor.affiliation: Universidade Federal de Viçosa, Departamento de Fitopatologia
Universidade de Brasília, Departamento de Ecologia
Universidade de Brasília, Departamento de Fitopatologia
Universidade de Brasília, Departamento de Fitopatologia
Universidade Federal de Viçosa, Departamento de Fitopatologia
Universidade de Brasília, Departamento de Fitopatologia
Assunto:: Fungos - cerrados
Taxonomia
Issue Date: 2022
Publisher: Taylor & Francis
Citation: GUTERRES, Débora C. et al. Filling a gap in the taxonomy of phyllachoroid fungi: proposition of Neopolystigma, gen. nov., and the new family Neopolystigmataceae. Mycologia, [S. l.], v. 114, n. 5, 900-913, 2022. DOI: https://doi.org/10.1080/00275514.2022.2092365.
Abstract: Researchers and practitioners globally, from a range of perspectives, acknowledge the difficulty in determining the value of a financial asset. This subject is of utmost importance due to the numerous participants involved and its impact on enhancing market structure, function, and efficiency. This paper conducts a comprehensive review of the academic literature to provide insights into the reasoning behind certain conventions adopted in financial value estimation, including the implementation of preprocessing techniques, the selection of relevant inputs, and the assessment of the performance of computational models in predicting asset prices over time. Our analysis, based on 109 studies sourced from 10 databases, reveals that daily forecasts have achieved average error rates of less than 1.5%, while monthly data only attain this level in optimal circumstances. We also discuss the utilization of tools and the integration of hybrid models. Finally, we highlight compelling gaps in the literature that provide avenues for further research.
metadata.dc.description.unidade: Instituto de Ciências Biológicas (IB)
Departamento de Ecologia (IB ECL)
Departamento de Fitopatologia (IB FIT)
DOI: https://doi.org/10.1080/00275514.2022.2092365
metadata.dc.relation.publisherversion: https://www.tandfonline.com/doi/full/10.1080/00275514.2022.2092365
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/46883/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.