Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46698
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_DealingCloudsSeasonal.pdf8,93 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAlbuquerque, Anesmar Olino de-
dc.contributor.authorCarvalho, Osmar Luiz Ferreira de-
dc.contributor.authorSilva, Cristiano Rosa e-
dc.contributor.authorLuiz, Argélica Saiaka-
dc.contributor.authorBem, Pablo Pozzobon de-
dc.contributor.authorGomes, Roberto Arnaldo Trancoso-
dc.contributor.authorGuimarães, Renato Fontes-
dc.contributor.authorCarvalho Júnior, Osmar Abílio de-
dc.date.accessioned2023-10-18T13:07:17Z-
dc.date.available2023-10-18T13:07:17Z-
dc.date.issued2021-08-13-
dc.identifier.citationALBUQUERQUE, Anesmar Olino de et al. Dealing with clouds and seasonal changes for center pivot irrigation systems detection using instance segmentation in sentinel-2 time series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, [S.l.], v. 14, p. 8447-8857, 2021. DOI: 10.1109/JSTARS.2021.3104726. Disponível em: https://ieeexplore.ieee.org/document/9513599. Acesso em: 18 out. 2023.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/46698-
dc.language.isoengpt_BR
dc.publisherIEEEpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleDealing with clouds and seasonal changes for center pivot irrigation systems detection using Instance segmentation in sentinel-2 time seriespt_BR
dc.typeArtigopt_BR
dc.subject.keywordNuvenspt_BR
dc.subject.keywordAprendizagem profundapt_BR
dc.subject.keywordSéries temporaispt_BR
dc.rights.licenseThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/pt_BR
dc.identifier.doi10.1109/JSTARS.2021.3104726pt_BR
dc.description.abstract1The automatic detection of Center Pivot Irrigation Systems (CPIS) is fundamental for establishing public policies, especially in countries with a growth perspective in this technology, like Brazil. Previous studies to detect CPIS using deep learning used single-date optical images, containing limitations due to seasonal changes and cloud cover. Therefore, this research aimed to detect CPIS using Sentinel-2 multitemporal images (containing six dates) and instance segmentation, considering seasonal variations and different proportions of cloudy images, generalizing the models to detect CPIS in diverse situations. We used a novel augmentation strategy, in which, for each iteration, six images were randomly selected from the time series (from a total of 11 dates) in random order. We evaluated the Mask-RCNN model with the ResNext-101 backbone considering the COCO metrics on six testing sets with different ratios of cloudless (< 20%) and cloudy images (> 75%), from six cloudless images and zero cloudy images (6:0) up to one cloudless image and five cloudy images (1:5). We found that using six cloudless images provided the best metrics [80% average precision (AP), 93% AP with a 0.5 intersection over union threshold (AP50)]. However, results were similar (74% AP, 88% AP50) even in extreme scenarios with abundant cloud presence (1:5 ratio). Our method provides a more adaptive and automatic way to map CPIS from time series, significantly reducing interference such as cloud cover, atmospheric effects, shadow, missing data, and lack of contrast with the surrounding vegetation.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1561-7583pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5619-8525pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1189-3337pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-2738-465Xpt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-3868-8704pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-4724-4064pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-9555-043Xpt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-0346-1684pt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.description.unidadeInstituto de Ciências Humanas (ICH)pt_BR
dc.description.unidadeDepartamento de Geografia (ICH GEA)pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.