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Abstract—The automatic detection of Center Pivot Irrigation
Systems (CPIS) is fundamental for establishing public policies,
especially in countries with a growth perspective in this technology,
like Brazil. Previous studies to detect CPIS using deep learning used
single-date optical images, containing limitations due to seasonal
changes and cloud cover. Therefore, this research aimed to detect
CPIS using Sentinel-2 multitemporal images (containing six dates)
and instance segmentation, considering seasonal variations and
different proportions of cloudy images, generalizing the models to
detect CPIS in diverse situations. We used a novel augmentation
strategy, in which, for each iteration, six images were randomly
selected from the time series (from a total of 11 dates) in random
order. We evaluated the Mask-RCNN model with the ResNext-101
backbone considering the COCO metrics on six testing sets with
different ratios of cloudless (< 20%) and cloudy images (> 75%),
from six cloudless images and zero cloudy images (6:0) up to
one cloudless image and five cloudy images (1:5). We found that
using six cloudless images provided the best metrics [80% average
precision (AP), 93% AP with a 0.5 intersection over union threshold
(AP50)]. However, results were similar (74% AP, 88% AP50) even
in extreme scenarios with abundant cloud presence (1:5 ratio).
Our method provides a more adaptive and automatic way to map
CPIS from time series, significantly reducing interference such as
cloud cover, atmospheric effects, shadow, missing data, and lack of
contrast with the surrounding vegetation.
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I. INTRODUCTION

S TRATEGIES for technological advances in agricultural
production are essential to feed the world’s growing pop-

ulation [1], [2]. The technology-driven intensification with the
increase in yield (production/area) is a viable solution to guaran-
tee world food security and avoid expanding agricultural regions
over natural environments [3]–[5]. Among the intensification
procedures, irrigation plays a fundamental role in increasing
agricultural productivity and decreasing costs and manual labor,
being essential for crops in arid and semi-arid regions. Despite
the benefits of irrigation for agriculture, it also negatively af-
fects soil and water resources, such as reducing surface water
and groundwater sources [6], [7], soil salinization [8], [9] ero-
sion [10], [11], and ecological damage [12]. Besides, conflicts
over water use increase, requiring governmental agencies to
balance the diverse demands from hydroelectric production,
irrigation, domestic, and industrial use. In the context of fast-
growing water demand in the agriculture, constant irrigated
area monitoring is crucial to predict and minimize current and
potential conflicts. The main alternative for assessing the spatial
distribution and estimating irrigated areas is the remote sensing
monitoring because of its speed, periodicity, cost-effectiveness,
and reliable data acquisition. Therefore, consistent remote sens-
ing information on irrigation areas contributes to water manage-
ment, anticipating necessary changes and negative impacts.

Among the various irrigation systems, the Center Pivot Irri-
gation System (CPIS) is one of the most advanced techniques
consisting of water sprinklers in a suspended structure along a ra-
dius that rotates throughout the circular area, ensuring a uniform
water distribution in the crops. The main advantages of the CPIS
are efficient water and energy consumption, less workforce, easy
operation, long-distance irrigation, and application of different
types of fertilizers.

CPIS is the predominant irrigation technology in Central
Brazil (Cerrado biome) due to the favorable environmental
conditions with extensive flat topography and surface and under-
ground water availability. The Cerrado biome has approximately
80% of all Brazilian CPIS [13]. However, the growing number
of CPIS has led to intensified conflicts over water use and the
need for governance of water resources [14]. In this context, the
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Fig. 1. Representation of the seasonal variations among center pivots in a Sentinel-2 image using the Red, Green, and Blue spectral bands.

National Water Agency (ANA—Agência Nacional de Águas)
performs the annual CPIS mapping based on remote sensing and
visual interpretation images [15], [16]. In the quest to automate
CPIS detection, methods based on deep learning (DL) have
achieved results with metrics over 90% [17]–[20]. This approach
allows for several advantages such as lower costs, faster, and
more accurate surveying when compared to visual interpretation
and traditional machine learning methods.

DL acts in solving problems in different areas of knowledge,
including image, video, speech, and audio recognition [21].
Besides, DL models offers the opportunity to automate systems
with high performance in processing large data sets by using
computers with high storage and processing capacity and GPUs.
Therefore, DL has promoted notable advances recently in the
field of computer vision, allowing a high learning power of
complex, subtle, and abstract representations directly from the
data [22]. DL’s extraordinary progress has had significant reper-
cussions for the remote sensing community, with an expressive
increase in the number of papers after 2014 [23]. In a short pe-
riod, different review articles focused on DL in remote sensing,
considering the different applications [24]; digital image pro-
cessing (image fusion, image registration, classification, change

detection, object detection, and segmentation) [23], [25]–[29];
environmental processes (land cover, vegetation parameters,
agricultural yield prediction, air temperature, aerosol, particulate
matter, precipitation, soil moisture, snow cover, evapotranspi-
ration, radiation parameters, and ocean color parameters) [30];
status and perspectives [31]; and types of images (hyperspectral,
multispectral, SAR, PolSAR, high spatial resolution, multi-
modal data fusion, and 3-D reconstruction) [32]–[36].

Convolutional neural networks (CNNs)-based models lead
remote sensing studies due to the impressive accuracy in ob-
ject recognition [28]. The CNN application in remote sensing
images is more complex than in traditional red, green, and blue
images. It requires geospatial systems, labeled data considering
the different sensors and high image dimensionality (spatial,
spectral, and temporal), clipping frames in specific sizes for
training and segmentation, and image reconstruction procedure
through sliding windows with overlapping pixels [37], [38].

There are three main difficulties associated with the mapping
of center pivots using the optical image and deep learning:
1) seasonal planting variation that eventually merges with the
surrounding areas (see Fig. 1); 2) cloud cover that prevents the
detection of the Earth’s surface; and 3) large-scale automated
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processing. The previous studies for CPIS detection using DL
on optical images considered a single time frame, requiring a
specialist to identify the best dates in which the CPIS are more
visible, and depending on the dates, the accuracy metrics may
vary due to the seasonal changes which makes the CPIS very
similar to their surroundings [18].

The present research aims to develop a procedure to annually
inventory the center pivots using Sentinel-2 multitemporal im-
ages and a distinct semantic identification for each CPIS, seeking
to circumvent ambiguities due to the interannual variability in
the crop stage and the presence of cloud cover or shadows. To this
end, we developed a multitemporal database considering differ-
ent planting stages and with different proportions of cloud cover.
The control of the cloud-cover proportion used an algorithm that
randomly introduced images with a high percentage of cloud
cover in the time series. Therefore, the methodology assesses the
learning ability of CNN architectures to detect targets without
having complete information over time. Besides, the CNN model
combined spatial-temporal spectral information.

II. RELATED WORKS

The governmental interest in CPIS’s water and energy con-
sumption and agricultural production caused an increase in
remote sensing studies for their detection. Although the circular
shape of the center pivot is very characteristic, its automatic
detection has limitations for traditional image classification
methods [39]. The CPIS do not have uniform spatial and tem-
poral behavior internally, containing different plantings (with
subdivision of the area or intercropped) and diversity for the
surrounding CPIS (with different agricultural crops and crop
production cycles) [18]. These peculiarities make the pixel-
based classifications considering the spectral response, vegeta-
tion indices, or temporal signatures very deficient. The inclusion
of spatial attributes to consider center-pivot shape presents a
challenge for remote sensing studies that have only recently
been overcome. Therefore, different approaches to center pivot
mapping by remote sensing have been used, such as a) visual
interpretation, b) Hough transform, c) Geographic object-based
image analysis (GEOBIA), and d) DL methods.

The first studies of CPIS mapping in the 70s and 80s used
the visual interpretation of circular features [40], [41], which is
still a widely used method [42]–[45]. Despite the precise results
with a visual interpretation, the process is laborious and time-
consuming.

Although the Hough Transform (HT) is a technique for au-
tomatically detecting circles, with a promising perspective for
detecting center pivots, few studies are on its application [19],
[46]. The main limitations of the HT method are complex
parameter setting, low precision, long computational time, and
difficulty in situations with incomplete circles [20], [47].

GEOBIA combines segmentation methods which partition
images into objects and a set of rules that allow intuitive step-
by-step classification. This object-based approach can have ad-
vantages over pixel-based approaches, incorporating spatial at-
tributes derived from the object’s shape, hierarchical multiscale
information, texture, and class-related characteristics [48]–[50].

The GEOBIA studies for detecting CPIS consider variations
in the methodological sequence and attributes used [51]–[53].
Yan and Roy [52] established three stages in the mapping of
center pivots using GEOBIA: a) object-based approach (active
geometric contour based on the variational region); b) segmen-
tation method (watershed algorithm); and c) geometry-based
algorithm to detect rectangular, circular, and irregularly shaped
fields. Johansen et al. [51] describe four steps in center pivot
detection: a) generation of the annual maximum image of
the Normalized Difference Vegetation Index and the annual
panchromatic band, b) segmentation, c) classification using the
shape such as the center pivot field length, length–width ratio,
and elliptical adjustment, and d) the rule-set definition.

However, several studies demonstrate an overall superiority of
DL to GEOBIA regarding different factors: a) greater precision
and efficiency; b) less human supervision; c) reuse of knowledge
due to the high capacity for transferability to other regions or
scenarios considering the various attributes of the object (light,
color, background, size, and shape); and d) less interference by
salt and pepper noise [54]–[56].

Recently, the CPIS has been a constant target for DL stud-
ies using CNNs with different approaches: a) detection of the
core point of the center pivot [47]; b) object detection with
the establishment of bounding boxes around CPIS [20], [57];
c) semantic segmentation that performs a pixel-wise classifi-
cation where all CPIS pixels receive a label [18], [58], [59];
and d) instance segmentation that produces bounding boxes and
pixel-wise segmentation masks on CPIS [17].

Among the CNNs-based models applied in CPIS, the instance
segmentation approach is the most complex and advantageous. It
allows extracting individual instance for each CPIS in an image
and acquiring more information such as the total number of CPIS
and area per unit. Besides, instance segmentation has a greater
ability to separate overlapping objects of the same class. The
most used instance segmentation methods are FCIS [60] and
Mask-RCNN [61], which first perform the instance step and
then perform the segmentation and classification in parallel.

In contrast to the above methods for center pivot detection,
the proposed method searches greater discrimination of the
center pivot by incorporating the temporal data to overcome the
influences of the images altered by the cloud cover or periods of
similar behavior between the pivot and the surrounding area.

III. MATERIALS AND METHODS

We applied the following methodology: A) Study area; B) im-
age acquisition; C) annotations; D) instance segmentation ap-
proach; and E) large image classification.

A. Study Area

The study areas are located in Central Brazil, containing the
country’s highest CPIS concentrations due to the flat terrain
and water potential that allows mechanization and irrigation.
The Central Brazil region is mostly used in studies with deep
learning to CPIS detection (Table 1). The low rainfall between
May and September prevents several crops, which becomes
viable with irrigation. This research considered two main CPIS
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Fig. 2. Study area.

Fig. 3. Representation of the constructed time series, in which the first six temporal frames (temp) are images with less than 20% of cloud cover and from temp
7 to temp 11, the images contain more than 75% of cloud cover.

concentrations within Central Brazil: a) Western Bahia and b)
region between the states of Minas Gerais and Goiás close
to the Federal District (see Fig. 2). Western Bahia presents a
significant growth in mechanized agriculture [63], [64] and an
intensification of center pivots, ranging from 9 in 1985 to 1550 in
2016 [65]. The Goiás/Minas Gerais region contains hundreds of
CPIS, resulting in an intensification of the water-use conflicts
due to the competition between irrigation, human consumption,
and hydroelectric power generation [14].

B. Image Acquisition and Time Series Construction

The Sentinel-2 mission developed by the European Space
Agency (ESA) under the European Union’s Copernicus pro-
gram acquires high spatial resolution multispectral optical im-
ages [66]. This research uses images with 10-m spatial resolution
corresponding to the spectral bands at 490, 560, 665, and 842 nm.
The images acquired in Level 1 C have radiometric processing
and geometric correction. In the Sentinel Application Platform
(SNAP) software developed by ESA, we carry out the prepro-
cessing steps.

In order to assess the seasonal and cloud interference, the
elaboration of the time series encompassed 11 different dates,
considering the dry and rainy periods and different percentages

of cloud images. We predetermined the percentage of cloud
coverage in the time series, selecting and combining two image
time series (cloudless and total cloud coverage). Therefore, we
chose 11 temporal frames for each region, in which six times
the criteria were less than 20% clouds and five times the criteria
were more than 75% clouds (see Fig. 3). In addition, each
temporal image contained four spectral bands (red, green, blue,
and near-infrared). Thus, the final stacked image for each region
presented a shape with 512(height)× 512(width)× 44(bands).

C. Annotations and Split

Since the main objective of this research is to identify CPIS
throughout a specified period, the ground truth elaboration care-
fully analyzed each temporal frame within the time series. If
a CPIS appeared at least once in any of the temporal frames,
we annotated it using the ArcGIS software. The basis for the
annotations was the vector data of the ANA, duly corrected
considering the visual interpretation. However, Detectron2’s
Mask-RCNN algorithm requires labels in the COCO annotation
format [67], in which each image tile needs a JSON file with the
corresponding annotations. Thus, we applied the method used
by de Carvalho et al. [17] to convert polygonal GIS data into the
instance segmentation annotation format. Each object acquired
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TABLE I
PREVIOUS STUDIES ON CENTER PIVOT IRRIGATION SYSTEMS DETECTION, AND THEIR CORRESPONDING REGION, SATELLITE, METHOD, MODEL,

AND BANDS

TABLE II
NUMBER OF IMAGES AND INSTANCES WITHIN THE TRAINING (TRAIN),

VALIDATION (VAL), AND TESTING (TEST) SETS

a unique value from 1 to N, with N being the total number of
CPIS.

The software automatically generates a folder with the
cropped images and the annotations for each image in the COCO
annotation format. We distribute the image tiles in training,
validation, and test sets, considering MG/GO area (2018 and
2020) as training data, Western Bahia area of 2020 for validation,
and 2018 for testing. We selected 500 points for each MG/GO
area image for training, totaling 1000 images. Table II shows the
distribution regarding the number of images and the number of
instances in each set.

1) Training Images: From each MG/GO region image (2018
and 2020), we selected 500 training samples (totaling 1000
samples). Even though the temporal series presents 11 dates, the
input model considered only six dates. In the training procedure,
we used a novel augmentation technique that selects six temporal
events (from the 11 total bands) in a shuffled order, correspond-
ing to an image with the following dimensions: 512 (width)
× 512 (height) × 24 (spectral-temporal bands). The selection
among six cloudless images and five cloudy images ensured that
the training sample had at least one cloudless event, preventing
the algorithm from having only cloudy events, which would
yield only errors. Furthermore, random selection helps avoid
overfitting, and in a practical application, there is no concern
with the order of images.

2) Validation and Test Images: The test stage used the image
of Western Bahia 2018, and the validation stage used Western
Bahia 2020. Unlike the training examples in which the order
of the images does the shuffling in each iteration, the test
and validation examples consider combinations with different
percentages of cloud events to assess their influence. Thus,
we evaluated the trained model in six configurations with the
following cloudless:cloud ratios: 1) 6:0; 2) 5:1; 3) 4:2; 4) 3:3; 5)
2:4; and 6) 1:5. Furthermore, we made five random combinations

for each selected sampling area to increase the number of the
samples and avoid possible bias. In this sense, the selection of
the test and validation samples considered 60 areas, resulting in
300 samples with a different ordering.

D. Instance Segmentation Approach

Among the instance segmentation models, the Mask-RCNN
is the most common approach. The Mask-RCNN algorithm has
three objectives: a) identify the bounding box for a given object,
b) classify that bounding box according to the object’s class, and
c) perform pixel-wise binary segmentation mask on the object.
For this reason, the total loss function is given by the sum of the
bounding box loss (Lossbbox), mask loss (Lossmask), and clas-
sification loss (Lossclass): Losstotal = Lossmask + Lossclass +
Lossbbox, whereLossmask andLossclass are the log loss function,
and Lossbbox is the L1 loss.

Detectron2 [68] is one of the most efficient instance segmen-
tation frameworks, introduced by the Facebook Artificial Intelli-
gence Research (FAIR), powered by Pytorch. This architecture,
usually applied to traditional RGB imagery, requires adjust-
ments to be compatible with the remote sensing data [17]. Hence,
we use the Detectron2 software from the Pytorch library with
some adaptations to suit our purposes. The software uses some
standard settings for traditional DL datasets, such as COCO and
Cityscapes. However, for remote sensing images, some changes
are necessary for a better adjustment of the models. We need
to change the number of input channels on the network (since
the most common approach uses only RGB channels). Conse-
quently, the input network increased to 24 channels since the
analysis used six temporal events, in which each event contains
four channels (red, green, blue, and near-infrared).

1) Model Configurations: To train the Mask-RCNN model,
we made the necessary source code changes for compatibility
reasons. Since one of our main objectives was to evaluate cloud
occlusion, all experiments considered the same backbone struc-
ture, the ResNeXt-101-32x8d (X-101) [69]. As augmentation
strategies to avoid overfitting, we applied the random choice
of temporal images for each iteration, random horizontal flip,
and random vertical flip. Furthermore, this procedure broke the
dependence of temporal structures, i.e., the order of images in
the temporal structure becomes irrelevant.

Regarding hyperparameters, we applied a) Adam optimizer
with a learning rate of 0.0005; b) 256 Region of Interest (ROIs)
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TABLE III
RESULTS FOR THE BOUNDING BOX AND MASK PREDICTIONS ON THE DIFFERENT TEST SETS WITH DIFFERENT RATIOS OF CLOUDLESS AND CLOUDY

IMAGES IN THE TIME SERIES

per image; c) 30 000 iterations; and anchor boxes with 16, 32,
64, 128, 256. The other parameters were used as default. We
used Nvidia GeForce RTX 2080 TI GPU with 11 GB memory
to process and train the model.

E. Accuracy Analysis

The model evaluation considered the COCO metrics [67]
average precision (AP), AP50, AP75, APs, APm, and APl.
These metrics are the most widely used in instance segmentation
problems and have proven to be satisfactory to evaluate different
models, including the original Mask-RCNN paper [61] and other
influential papers on the subject [70]–[73]. The AP is a ranking
metric that considers the area under the precision–recall curve.
However, the COCO AP also considers ten Intersection over
Union thresholds (IoU) (from 0.5 to 0.95 with 0.05 steps).
AP50 and AP75 scores consider a fixed threshold of 0.5 (more
permissive) and 0.75 (stricter). Moreover, APsmall, APmedium,
and APlarge consider the sizes of the different objects, in which
small objects have areas of 322 or lower, medium objects have
areas between 322 and 962, and large objects have areas larger
than 962.

IV. RESULTS

A. Cloud Interference and Performance Metrics

Table III lists the detection (Box) and segmentation (Mask)
results with different ratios of cloudless and cloudy images using
the X-101 backbone. The main metric (AP) decreases with the
increase of cloudy images proportion in the time series for both
the bounding box and the mask predictions. The maximum dif-
ference between the AP values (6:0–1:5) is not expressive, reach-
ing 5.93 for the bounding box and 5.32 for the mask prediction.
Moreover, the box and mask results are similar, mainly because
of the CPIS round shape, which yields similar IoU results for
the boxes and segmentation masks. This result demonstrates the
ability of the DL method to detect features even under conditions
of little information (low presence of cloudless images) in the
time series. The most extensive ranges of variation are between
time series with the lowest cloudless image ratio (1:5 and 2:4).
In contrast, time series containing high cloudless image rates
maintain high values and are close to each other. This behavior
is predictable, where the smaller proportion of cloudless images

increases the seasonal effect and the probability of not obtaining
adequate images to detect center pivots.

The other precision measures (AP50, AP75, APsmall,
APmedium, and APlarge) tend to show the same general be-
havior of decreasing values with an increasing proportion of
cloudless images. The only exception was the APm, which had
a position inversion between the 6:0 and 5:1 ratios, despite
the very close values. This experiment shows scenarios with a
very extreme cloud image in the time series, still showing good
results.

Among the metrics evaluated, APs had the worst results. The
main factor for the poor performance of small objects is that they
represent partial forms of CPIS positioned on the edges of the
frame, which in the sample cut became incomplete and small.
Therefore, the sample edges are more susceptible to detection
errors, which can be minimized with the application of the
moving window mosaic [17].

Fig. 4 shows the prediction of the same region with different
ratios of cloud presence in the time series. The result demon-
strates that even in the most extreme scenarios, with five cloudy
images and only one cloudless image, the instance segmentation
obtained correct predictions. The modifications identified be-
tween the different predictions concentrated on minor variations
in the center pivot design. Besides, there are inaccuracies in
detecting a small part of a center pivot cut in the left corner of
the third alignment of the CPISs. As the proportion of clouds
increases, the small slice of a center pivot disappears.

B. Seasonal Interference

Eventually, the CPIS patterns fade with the surrounding areas,
and the detection is not possible. The use of multitemporal
images guarantees the acquisition of data in the different planting
stages that evidence the presence of CPIS.

Fig. 5 presents nine examples containing instance segmen-
tation results and the color compositions of the six temporal
images used as input. The Sentinel-2 images correspond to
images with a percentage of clouds below 25%. This condition
would be a viable criterion to compose the six multitemporal
images, allowing to obtain a vast predominance of free-cloud
images, different phases of the planting cycle, and a viable set
for automation with good precision. The temporal sequence
demonstrates that some center pivots practically disappear in
specific periods, becoming very similar to their surroundings,
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Fig. 4. Representation of the predictions of a given region using the different ratios of cloud presence, in which each bounding box with the segmentation mask
represents a different instance of center pivots.

making their detection very difficult even by visual interpre-
tation. A clear example is the images of row A, where some
images (frames 1–2–3) are visible only in three center pivots,
despite the existence of four CPIS as evidenced by the last image
(frame 6). The other images present CPIS with behavior like the
background in a certain period.

Therefore, the different behaviors of CPIS over time make
it difficult to generalize a DL model to a single date. The
model with multitemporal data allows high generalizability
and a precise classification, even in cases where the CPIS
becomes imperceptible or in the presence of clouds in a temporal
interval.

V. DISCUSSION

All DL models applied to optical imaging for center pivot
detection reported training and applications for single-time

imaging [17], [18], [20], [47], [57]–[59]. The main problems
from only one date are clouds and visualizing the center pivot
in particular planting stages. De Albuquerque et al. [18] showed
that there are periods of the year that are easier to identify CPIS
due to seasonal changes. According to the authors, the end of
the drought and rainy seasons in Central Brazil present more
significant difficulties. The best period is the onset of drought
when the natural environment has nonphotosynthetically ac-
tive vegetation, and the irrigated pivots have photosynthetically
active vegetation.

Therefore, a viable solution to overcome the problems
described is developing DL models adapted to a set of temporal
images. Recently, a study using Sentinel-1 radar images used
DL models of time series to detect center pivots [62]. Although
radar data is free from cloud interference, research has shown
that increasing the number of images has improved instance
segmentation accuracy.
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Fig. 5. Representation of nine predictions and their respective cloudless (< 20% cloud cover) time series. Note that even with this percentage, there is still a
chance of having cloudy frames, as shown in F and H.

This multitemporal approach with DL algorithms allows a
more generalized learning that captures the uniform shape of
the center pivot, disregarding the images with the presence of
clouds and variations in the plantations. Furthermore, the model
presents efficiency independent of the temporal order of the
images. This approach of looking for an invariant shape over
a period differs from studies that distinguish the types of crops
that depend on the phenological cycle, and the chronological

sequence [74], [75]. In this context, we developed a new strategy
to increase the number of samples and reduce the chances of
overfitting, randomly selecting the order of images in the time
series. Training and evaluation considered different cloud pro-
portions and the image ordering allows for a greater flexibility
in data acquisition and automation.

The proposed methodology represents a robust alternative
to the CPIS surveys carried out by the Brazilian government
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based on the visual interpretation of images [15], [16]. The
procedure has significant advantages in terms of speed and
consideration of multitemporal images, not limited to a specific
date. Furthermore, the present DL approach with multitemporal
optical images can be effectively applied to other objects with a
fixed format within a time interval of interest, such as buildings
and solar panels.

VI. CONCLUSION

The present study proposed a new DL approach for CPIS
detection using time series, including different cloud occlusion
scenarios and seasonal behavior, problems of great interest in
the study of optical images. Unlike single-date data, multitem-
poral data offers more opportunities to observe center pivots
by overcoming optical imaging issues such as cloud cover,
atmospheric effects, shadow, missing data, and lack of contrast to
surrounding vegetation. In addition, time-series satellite images
reduce ambiguities arising from the phenological stage and the
spatial boundary of the CPIS.

We proposed a new augmentation strategy for time series
analysis in which we randomly select images from the time
series, introducing different percentages of cloudy images.
The procedure forces the neural network to learn with the
presence of images containing atmospheric interference and
spectral similarity between the center pivot and the surround-
ing areas. However, this procedure only applies to objects
that present similar structures over time, as is the case with
CPIS.

Predictably, we found that results were better when using a
time series with images with a low cloud presence. Nonetheless,
results kept steady even in more extreme scenarios, demonstrat-
ing a good generalization capability. Furthermore, this approach
to targets with spectral variation over time within a fixed shape
favors the generalization of the model, as it captures differ-
ent scenarios of the same object and increases the predictive
power. The results show an excellent perspective for practical
application, obtaining good results from six images without a
rigorous selection for better detection. The algorithm returns a
very precise classification result. This model favors automation
of CPIS detection with cost savings and agility, and and avoids
large consumption of labor.
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