Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/45057
Arquivos associados a este item:
Não existem arquivos associados a este item.
Título: Concentration, existence of a ground state and multiplicity of solutions for a subcritical elliptic system via penalization method
Autor(es): Figueiredo, Giovany de Jesus Malcher
Argomedo Salirrosas, Segundo Manuel
E-mail do autor: mailto:giovany@unb.br
mailto:semaarsa@gmail.com
ORCID: https://orcid.org/0000-0003-1697-1592
https://orcid.org/0000-0003-2570-7603
Assunto: Sistemas elípticos
Schrödinger, Equação de
Ljusternik-Schnirelmann, Teoria de
Soluções positivas
Data de publicação: 13-Jan-2021
Editora: Springer
Referência: FIGUEIREDO, Giovany M.; A. SALIRROSAS, Segundo Manuel. Concentration, existence of a ground state and multiplicity of solutions for a subcritical elliptic system via penalization method. SN Partial Differential Equations and Applications, v. 2, n. 1, art. 6, fev. 2021. DOI 10.1007/s42985-020-00064-6. Disponível em: https://link.springer.com/article/10.1007/s42985-020-00064-6. Acesso em: 21 out. 2022.
Abstract: We consider the system −ε2 div (a(x)∇u)+u=Qu(u,v) in RN,−ε2 div (b(x)∇v)+v=Qv(u,v) in RN,u,v∈H1(RN),u(x),v(x)>0for each x∈RN, where ε>0, a and b are positive continuous potentials and Q is a p-homogeneous function with subcritical growth. In the first place we show existence of a ground state solution for this system. After that, we show existence of multiple solutions involving the category theory and the topology of the sets of minima of the potentials a and b . Finally, we show a concentration result. More precisely, we show that at the maximum points of each solution, the potentials a and b converge to their points of minimum points when ε converges to zero.
DOI: https://doi.org/10.1007/s42985-020-00064-6
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.