Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/44414
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
SemTexto.pdf1,11 kBAdobe PDFVisualizar/Abrir
Título : Spectral rule-based expert system for automatic near real-time thermal anomalies detection in geostationary GOES-16 ABI imagery
Autor : Carvalho, Luiz F. R. de
Laneve, Giovanni
Baraldi, Andrea
Santilli, Giancarlo
Assunto:: Sistemas especializados
Processamento de imagens geofísicas
Sensoriamento remoto
Fecha de publicación : 2021
Editorial : IEEE
Citación : CARVALHO, Luiz F. R. de et al. Spectral rule-based expert system for automatic near real-time thermal anomalies detection in geostationary GOES-16 ABI imagery. 2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, Brussels - Belgium. DOI: 10.1109/IGARSS47720.2021.9553625.
Abstract: Typical advantages and limitations of prior knowledge-based (deductive, top-down) expert systems are well known in literature: they typically score “high” in efficiency and interpretability, but they tend to score “low” in transferability/robustness to changes in input data. To benefit from these advantages while overcoming their typical shortcomings, an original expert system, based on a priori purely spectral-domain knowledge, is proposed for per-pixel (spatial context-insensitive) automatic near real-time detection of thermal anomalies in geostationary GOES-16 ABI multi-spectral (MS) imagery. Unable to learn-from-data, the proposed static decision-tree for MS signature recognition (classification) requires neither training data nor human-machine interaction to run. Its degrees of novelty pertain to the Marr levels of system understanding known as information/knowledge representation, system design (architecture) and implementation. Input with day and night ABI imagery acquired every 15 minutes, the proposed expert system detected 680 pixels with thermal anomalies in ABI images of the North and South Americas acquired from 30/01/2018 (15:00 UTC) to 31/01/2018 (01:30 UTC).
metadata.dc.description.unidade: Faculdade UnB Gama (FGA)
DOI: 10.1109/IGARSS47720.2021.9553625
metadata.dc.relation.publisherversion: https://ieeexplore.ieee.org/document/9553625
Aparece en las colecciones: Trabalhos apresentados em evento

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/44414/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.