Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/43554
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_VehicleStabilityUpper.pdf3,31 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMagalhães Júnior, Zoé Roberto-
dc.contributor.authorPinto, André Murilo de Almeida-
dc.contributor.authorLopes, Renato Vilela-
dc.date.accessioned2022-04-26T22:50:25Z-
dc.date.available2022-04-26T22:50:25Z-
dc.date.issued2022-01-31-
dc.identifier.citationMAGALHÃES JÚNIOR, Zoé Roberto; MURILO, André; LOPES, Renato Vilela. Vehicle stability upper-level-controller based on parameterized model predictive control. IEEE Access, v. 10, p. 21048-21065, 2022. DOI 10.1109/ACCESS.2022.3147452. Disponível em: https://ieeexplore.ieee.org/document/9698140. Acesso em: 26 abr. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/43554-
dc.language.isoInglêspt_BR
dc.publisherIEEE Xplorept_BR
dc.rightsAcesso Abertopt_BR
dc.titleVehicle stability upper-level-controller based on parameterized model predictive controlpt_BR
dc.typeArtigopt_BR
dc.subject.keywordControladores eletrônicos de velocidadept_BR
dc.subject.keywordControle de estabilidadept_BR
dc.subject.keywordControle direto do momento de guinadapt_BR
dc.rights.licenseIEEE Access - This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ Fonte: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9698140. Acesso em: 26 abr. 2022.pt_BR
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2022.3147452pt_BR
dc.description.abstract1This paper presents an upper-level vehicular stability controller based on parameterized Model Predictive Control (MPC). The proposed system computes the additional moment applied on the vehicle’s yaw axis to improve the lateral stability. In the MPC formulation, the optimization problem is defined as a quadratic programming derived from a linear time-invariant model of vehicle dynamics. The control system is implemented based on a model that considers the rolling movement and on a simpler model that does not consider it, in order to evaluate the effects of using a more representative linear model for more accurate prediction or a simplified model for faster calculation. Constraints are imposed on the optimization problem to deal with the limits in the corrective yaw moment. A parameterized MPC approach is designed to reduce the number of optimization variables, and hence, reducing the computation time required for real-time implementation. Model-in-the-loop simulations are proposed to evaluate the effectiveness of the MPC strategy to avoid steering instability. Simulations are performed for profiling the calculation time, tuning the parameters, and testing algorithm running in an ARM-Cortex A8 on real-time control. Simulation results show that the proposed control strategy is effective in preventing destabilization and demonstrates that even with a longer computation time, the resulting MPC scheme meets the control requirements successfully, even under the presence of model disturbances.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-4904-0401pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5101-0685pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8824-6384pt_BR
dc.contributor.emailmailto:zr.magal@gmail.compt_BR
dc.description.unidadeFaculdade UnB Gama (FGA)-
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.