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ABSTRACT This paper presents an upper-level vehicular stability controller based on parameterized Model
Predictive Control (MPC). The proposed system computes the additional moment applied on the vehicle’s
yaw axis to improve the lateral stability. In the MPC formulation, the optimization problem is defined
as a quadratic programming derived from a linear time-invariant model of vehicle dynamics. The control
system is implemented based on a model that considers the rolling movement and on a simpler model that
does not consider it, in order to evaluate the effects of using a more representative linear model for more
accurate prediction or a simplified model for faster calculation. Constraints are imposed on the optimization
problem to deal with the limits in the corrective yaw moment. A parameterized MPC approach is designed
to reduce the number of optimization variables, and hence, reducing the computation time required for real-
time implementation. Model-in-the-loop simulations are proposed to evaluate the effectiveness of the MPC
strategy to avoid steering instability. Simulations are performed for profiling the calculation time, tuning the
parameters, and testing algorithm running in an ARM-Cortex A8 on real-time control. Simulation results
show that the proposed control strategy is effective in preventing destabilization and demonstrates that even
with a longer computation time, the resultingMPC schememeets the control requirements successfully, even
under the presence of model disturbances.

INDEX TERMS Electronic stability control, model predictive control, vehicle lateral stability.

I. INTRODUCTION
Vehicle movement may divert from the driver’s intention in
adverse driving conditions. Electronic stability control (ESC)
systems are active safety systems designed to correct unde-
sired actions that may take the vehicle off the desired path or
make driving too complicated for not skillful drivers. They
have played a significant role in reducing the risk of fatal car
crashes in recent years [1]. Thus, several research topics have
been developed to design a proper control structure for these
systems. In many cases [2]–[7], a hierarchical architecture
is often used, where an upper-level controller calculates a
virtual control input (e.g., the direct yaw moment, the tire-
slip ratio, the force generated on tires), while a low-level con-
troller commands the available actuation system to change
the torque transferred to the wheels, to cause a difference
between the forces acting on the tires that ensure the virtual
command calculated by the upper-level controller.

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiqing Wen .

Regarding control methodologies used in ESC design,
advances in computational power of embedded systems have
made possible the exploration of different control theories,
such as sliding mode control [8]–[11], backstepping tech-
nique [12] and robust gain schedule [13], [14].

Another optimal control strategy applicable to ESC’s con-
trol problem is the Model Predictive Control (MPC). Accord-
ing toMPC definition [15], [16], the controller solves, at each
sampling instant, a constrained optimization problem to find
the sequence of yaw moments applied to the car at the next
sampling instants over a finite prediction horizon. In this
process, just the first element of this sequence is applied to
the vehicle. In this sense, it may be interesting to consider
the potential use of MPC strategies in ESC design, due to
its ability to predict future response using vehicle dynamics
models and to address the physical limits of actuation. Thus,
the MPC has excellent features to meet vehicle stability con-
trol requirements.

Indeed, in the literature, some recent contributions
emerged concerning MPC for vehicle stability control
[17]–[21]. Despite the reasonably satisfactory performances
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TABLE 1. Nomenclature.

of the algorithms used in these works, an issue that must be
considered for MPC-based stability control is not taken into
account in any of these papers, which is the computational
efficiency in real-time applications. In fact, the main draw-
back of the MPC controller is that running an on-line opti-
mization problem at each time step requires substantial time
and computational resources, which is the biggest obstacle to
apply this controller to commercial vehicles.

An aspect that affects the MPC’s real-time performance
is the choice of the prediction model since the use of more
simplified models provides less accurate predictions. In con-
trast, the use of more precise and complex models reduces
the commands update rate by increasing the processing time
to solve the optimization problem. In general, more accurate
predictions are obtained using a nonlinear model to represent
vehicle dynamics. However, those models result in nonlinear
programming that is a computationally hard problem and is
often impractical in real-time applications [17].

In this sense, the main strategy used in the literature is
to use a linear model for prediction helps to fit the opti-
mization into the quadratic programming (QP) form. How-
ever, the complexity of the QP problem is still a challenge
for real-time MPC applications with low-cost hardware. For
example, in [18], [22], reconfigurable MPC-based ESCs are
proposed to vehicles with different actuation systems. The
MPC is designed based on a linear model that considers the
roll motion and can predict the response to different combi-
nations of control inputs. The set-up is performed by setting a
selector matrix that makes the prediction model unresponsive
to unavailable control inputs, without taking off those inputs
from the linear model, which does not affect the length of the
Hessian matrix of the optimization problem. Simulations are
performed to demonstrate the effectiveness of proposed ESCs
with different configurations. However, the implementation
of the embedded control system to execute the proposed
algorithm is not presented, as well as no simplification of

the optimization problem is applied to the QP to improve the
computation time required to solve it.

Stability control based on MPC to handle with constraints
on control inputs has been presented in [20], [23]–[25].
In [20], [23], [24], the rotations of the wheels are included
as state variables of the prediction model, and in [25], the slip
angles of the rear and front axis are considered. Results from
simulation and experimental tests are presented to demon-
strate the effectiveness of proposed ESCs to improve vehicle
stability. However, real-time implementation issues are not
addressed.

An unconstrained MPC for yaw stability with practical
concerns is presented in [26], where the cost function of
MPC is defined without inequality constraints such that
a closed-form solution can be defined as the optimization
problem. Therefore, the computational efficiency of ESC
is improved by avoiding the QP solving. Nevertheless, the
proposed approach excludes theMPC capability to handle the
constraints of the actuation system.

In [5], an MPC is designed to integrate the objectives
of the longitudinal collision avoidance and lateral stability.
The algorithm dynamically alters the weight matrices of the
QP problem according to driving conditions. The MPC is
designed based on the two-degree-of-freedom (DOF) vehi-
cle’s lateral model that includes only the yaw rate and the
side-slip of the vehicle body. Hardware-in-the-loop (HIL)
simulations are performed in a platform where the vehicle
motion and the control algorithm are simulated by computers
that access from a Controller Area Network (CAN) bus a
brake system, a yaw rate sensor, and a wheel-speed simulator.
Again, the embedded control system is also not presented,
and no method is shown to reduce MPC’s computation
time.

Thus, it is worth mentioning the lack in the liter-
ature regarding contributions that address the real-time
implementation of a constrained MPC-based ESC with lim-
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ited processing hardware. In this context, the present paper
proposes a constrained parameterized MPC-based upper-
level ESC that computes the additional yaw moment to
improve lateral stability. Therefore, this can be used as input
for a low-level controller that commands an available actu-
ation system able to generate a moment at the vehicle yaw
axis. To reduce the complexity of the optimization problem,
the MPC is designed using the parameterization of the input
vector to reduce the number of optimization variables and,
hence, the computation time.

The reduction in processing time allows us to investigate
the advantages of using a more representative prediction
model for lateral stability control. Thus two versions of the
control system proposed in this paper are implemented using
different prediction models: a more realist one that uses the
rolling motion and a simpler one that does not consider it.
Although the objective of this work is not to propose a system
that integrates the stability control and rollover prevention,
the implementation of the MPC using a linear model that
includes the rolling movements, in addition to providing a
more realistic prediction, enables some roll control. This
capability can be used to avoid solutions that improve lateral
stability performance at the cost of a significant increase in
rollover risk.

Lateral stability controllers based on linear models that
include the roll motion have been presented in [4], [18], [22],
[27], [28]. In [4], [18], [22], [27], The MPC is implemented
with an optimization problem defined to combine the objec-
tives of the rollover prevention and lateral stability control.
And [28] introduces an index to measure the loss of adhesion
between the tire and the road, which, along with a rollover
index, is used to define the objectives of a robust control
developed to mitigate the accident risk. Nevertheless, such
papers do not present the effects on the stability performance
in comparison with the use of a simpler model taking into
account the computation time.

Therefore, the main contribution of this paper consists
of designing a computational efficient MPC strategy that
reduces the complexity of solving the optimization problem
by applying an exponential parameterization to the control
vector over the prediction horizon. In addition to that, this
paper also presents:

• The implementation and testing of a parameterizedMPC
strategy embedded on BeagleBoneBlack Rev C.

• Tuning and evaluation of MPC with Processor-in-the-
loop (PIL) simulations, enabling validation, and imple-
mentation of the embedded controller in real hardware
with limited resources and processing capacity.

• Comparison results for lateral stability between the pro-
posed MPC strategy and Linear Quadratic Regulator
(LQR), which is more computationally efficient but
unable to handle with system’s constraints.

• Comparison results for lateral stability between two ver-
sions of the proposed ESC based on different prediction
models: one simplified model that includes only the

FIGURE 1. Schematic view of vehicle dynamic model.

side-slip angle and the yaw rate, and another that adds
the roll angle and the roll rate within the states.

This paper is organized as follows. First, the vehicle model
is presented in section II. Then the control problem is pre-
sented in section III. The parameterized MPC scheme is then
detailed in section IV. Section V presents the methodology
used for experiments with a complete hardware descrip-
tion. Simulation and experimental results are presented in
section VI. This paper ends with conclusions and future
works in section VII.

II. VEHICLE DYNAMICS
The vehicle dynamics model considered in this work for
implementation of simulations environments and for obtain-
ing the linear model used in control design includes the
lateral, yaw and roll motions, and assumes a constant lon-
gitudinal speed [4], [29]–[31]. Figure 1 shows this model
represented by the following equations of motions:

m
(
v̇− ψ̇u

)
− mshsφ̈ =

∑
Fy

Izzψ̈ − Ixzφ̈ =
∑

Mz

Ixx φ̈ − Ixzψ̈ =
∑

Mx (1)

where v denotes the lateral speed, u the longitudinal speed,
φ the roll angle, ψ the yaw angle, m the vehicle total mass,
ms the sprung mass, hs the sprung height, Ixx and Izz the
yawing and rolling inertial moments, respectively, Ixz the
inertial product related to yawing and rolling. Fy, the lateral
forces generated by tires on vehicle’s center of gravity (CG),
Mz areMx are themoments on yaw and roll axes, respectively.

The lateral forces andmoments on vehicle CG are resultant
of the forces acting on tires, are obtained as follows:∑

Fy = Fyfl + Fyfr + Fyrl + Fyrr∑
Mz = a

(
Fyfl + Fyfr

)
− b

(
Fyrl + Fyrr

)
+
tf
2

(
Fxfr − Fxfl

)
−
tr
2
(Fxrr − Fxrl)+Mu∑

Mx = mshs
(
v̇+ ψ̇u

)
+ mshsg sin(φ)

−
(
kφf + kφr

)
φ −

(
cφf + cφr

)
φ̇ (2)
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where a denotes the distance from front axis to CG, b the
distance from rear axis to CG, tf and tr the front and rear
track width, respectively,Mu the extra yaw-moment, kφf and
kφr the front and rear roll stiffness coefficient, respectively,
cφf and cφr the front and rear roll dumping coefficient,
respectively. Fyfl , Fyfr , Fyrl , and Fyrr are the components of
the forces generated by front-left, front-right, rear-left, and
rear-right tires in the direction of lateral axis of the vehicle.
And Fxfl , Fxfr , Fxrl , and Fxrr are the component of forces
generated by front-left, front-right, rear-left, and rear-right
tires in the direction of longitudinal axis of the vehicle.

The projection of the forces acting on tires on the longitu-
dinal and lateral axes of the vehicle depends on the steering
angle of the wheels, and it is given by the following equation
of vector rotation:[

Fxi
Fyi

]
=

[
cos(δi) sin(δi)
−sin(δi) cos(δi)

]
·

[
Fwxi
Fwyi

]
(3)

where i ∈ fl, fr, rl, rr , in which fl, fr, rl, rr index the front-
left, front-right, rear-left and rear-right tires, respectively, and
δi is the steering angle of ith tire.

A constant longitudinal speedmeans no longitudinal accel-
eration, which means that there is a balance between the
forces on longitudinal direction generated by tires and fric-
tion. For approximation, it is considering that such balance
is obtained because the longitudinal forces acting on each
tire are the same. In this way, the longitudinal forces of the
tires cancel out each other in the in the yaw moment equation
in (2). And that is the reason why the longitudinal forces of
the tires are not included in this model [25], [32]–[34].

A metric to analyze lateral stability performance is the
side-slip angle β, which is the angle between the total speed
and vehicle’s longitudinal axis, such as β = arctan v/u. It is
a measure of how much the vehicle is laterally slipping from
the desired trajectory.

A. TIRE DYNAMICS
The Pacejka’s Magic Formula (MF) is an empirical formu-
lation derived from experimental tests that can be used to
compute forces acting on tires [35]. Using Pacejka’s MF,
the lateral force Fyi and the longitudinal force Fxi acting in
each tire, indexed by i, can be obtained from values of wheel
vertical force Fzi, tire slip angle αi, camber angle γi, and slip
ration λ as follows:

Fyi = D sin(Svi + C arctan[B(1− E)α′i + E arctan(Bα′i)])

C = a0
D = Fzi(a1Fzi + a2)

B =
a3 sin(2 arctan

Fzi
a4
)

CD
(1− a5 |γi|)

E = a6Fzi + a7
Shi = a8γi + a9Fzi + a10

Svi =
(
a11F2

zi + a12Fzi
)
γi + a13Fzi + a14

α′i = αi + Shi

i = fl, fr, rl, rr (4)

Fxi = D sin(Svi + C arctan[B(1− E)λ′i + E arctan(Bλ′i)])

C = b0
D = Fzi(b1Fzi + b2)

B =
b3 sin(2 arctan

Fzi
b4
) exp(b5Fzi)

CD
E = b6F2

zi + b7Fzi + b8
Shi = b9Fzi + b10
Svi = 0

i = fl, fr, rl, rr (5)

where a1, a2, a3, . . . , a14 and b1, b2, b3, . . . , b10 are the
Pacejka‘s Magic Formula coefficients [35].

The side-slip angle is the angle between the tire’s longitu-
dinal axis and its velocity vector. The side-slip angle of the
front-left tire αlf is illustrated in Figure 1. The side-slip angle
of the four tires are given by:

αfl = δf − arctan

(
v+ aψ̇

u− tf
2 ψ̇

)

αfr = δf − arctan

(
v+ aψ̇

u+ tf
2 ψ̇

)

αrl = − arctan

(
v− bψ̇

u− tr
2 ψ̇

)

αrr = − arctan

(
v− bψ̇

u+ tr
2 ψ̇

)
(6)

The slip ratio is the relative difference of the rolling speed
of the tire and the vehicle’s longitudinal speed, and its given
by:

λi =


ωReff − u
ωiReff

, if ωiReff > u

u− ωiReff
u

, otherwise
(7)

in which ωi is the angular speed of the wheel, Reff is the
effective radius of the wheel-tire set, and u is the vehicle
longitudinal speed.

The vertical load on each wheel is given by the vehicle
weight transferred to it. When vehicle is moving, the vertical
force in each wheel are given by [4], [31]:

Fzfl =
mgb
2l
−
maxh
2l
−
mayah
ltf
−
kφf φ
tf
−
cφf φ̇
tf

Fzfr =
mgb
2l
−
maxh
2l
+
mayah
ltf
+
kφf φ
tf
+
cφf φ̇
tf

Fzrl =
mga
2l
+
maxh
2l
−
mayah
ltr
−
kφrφ
tr
−
cφr φ̇
tr

Fzrr =
mga
2l
+
maxh
2l
+
mayah
ltr
+
kφrφ
tr
+
cφr φ̇
tr

(8)

in the above equations, h denotes the height of the center of
gravity, and l the wheelbase.
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In this work, to take into account the effects of roll motion
on tire dynamic, the camber angle of four wheels are consid-
ered ideally the same, simplified as follows:

γ = Kγφ (9)

Kγ denotes the camber-by-roll gradient, which represents
variation of camber due to rolling given by Kγ =

∂γ
∂φ

[36].
The steering angle of wheels is obtained by summing a part
relating to the driver’s command and a component generated
by rolling motion. For a passenger car, where the steering
wheel controls only the front wheels, the front, and rear steer
angles can be obtained as follows:


δfl
δfr
δrl
δrr

 = GδδD +



∂δf

∂φ
∂δf

∂φ
∂δr

∂φ
∂δr

∂φ


φ

Gδ =
[
1/Is 1/Is 0 0

]T (10)

where δD is the steering wheel angle, Is is the steering coeffi-
cient, and ∂δr/∂φ and ∂δf /∂φ are rear and front steer-by-roll
coefficient, respectively.

B. LINEAR MODEL
In the literature on lateral stability control, the vehicle linear
model used in control design is often obtained from simpli-
fications for constant longitudinal speed u = uref and small
angles [18], [22], [37], such that sin(φ) ≈ φ, sin(δi) ≈ δi,
cos(δi) ≈ 1, and β ≈ v/uref . This strategy is used in this
work to obtain the linear model used in MPC implementation
from linearization of the presented non-linear model. Thus,
the linearization of the equations of motion (Eq. 1 and Eq. 2)
is given by:

Kxẋ = Gxx+GFFy +GuMu

x =
[
β ψ̇ φ̇ φ

]T
Fy =

[
Fyfl Fyfr Fyrl Fyrr

]T
Kx =


muref 0 −mshs 0
0 Izz −Ixz (cφf + cφr )

−mshsuref Ixz Ixx 0
0 0 0 1



Gx =


0 −muref 0 0
0 0 0 0
0 mshsuref 0 (mshsg− kφf − kφr )
0 0 1 0



GF =


1 1 1 1
a a −b −b
0 0 0 0
0 0 0 0


Gu =

[
0 1 0 0

]T (11)

FIGURE 2. Lateral tire forces computed by Magic formula of Pacejka and
its linear approximation.

The consideration of small angles places the linearization
point within the stability zone so that while the control is
successful in preventing instability, the vehicle’s response
remains close to that predicted by the linear model. A draw-
back of this approach consists in considering the constant
speed in the linear model so that whenever the vehicle speed
is different from the linearization point, there will be a mis-
match between the vehicle’s response and that predicted by
the model.

Equation 11 presents a linear model of the movement
response to the lateral forces generated in each tire. Thus, the
second stage of linearization consists of obtaining a linear
model of the forces generated in the tires. For small tire
slip and camber angles, a good approximation of the force
generated in the tires is given by [30], [35]:

Fyi = Cαiαi + Cγ iγ

Cαi =
∂Fyi
∂αi

∣∣∣∣
ax ,ay,γ,α,φ,φ̇=0

Cγ i =
∂Fyi
∂γi

∣∣∣∣
ax ,ay,γ,α,φ,φ̇=0

i = fl, fr, rl, rr (12)

where Cαi and Cγ i denote cornering stiffness and camber
stiffness coefficients, which can be obtained from Equations
(4) and (12) [35]. Fig. 2 shows the forces generated by the
MF and this linear approximation, where one can see that for
small angles the Equation (12) gives a good approximation.

Replacing the Equation (9) in (12), the vector FY of lateral
forces generated on tires can be expressed as:

Fy = Gα3+Gγ x

3 =
[
αfl αfr αrl αrr

]T
Gα =

[
Cαfl Cαfr Cαrl Cαrr

]
Gγ =


01×3 CγflKγ
01×3 Cγ frKγ
01×3 Cγ rlKγ
01×3 Cγ rrKγ

 (13)

The front and rear wheels slip angle are approximated by
linear functions of vehicle slip angle, yaw rate, and wheels

21052 VOLUME 10, 2022



Z. R. Magalhaes et al.: Vehicle Stability Upper-Level-Controller Based on Parameterized Model Predictive Control

steer angle [21], [31]:

3 =

−1 −a/u 0 0
−1 −a/u 0 0
−1 b/u 0 0

 x+


δfl
δfr
δrl
δrr

 (14)

Combining Equations (10) and (14), the following equation
is obtained:

3 = G3x+GδδD

G3 =



−1 −a/u 0
∂δf

∂φ

−1 −a/u 0
∂δf

∂φ

−1 b/u 0
∂δr

∂φ

−1 b/u 0
∂δr

∂φ


(15)

The linear model of vehicle dynamics in the state space form
can be obtained by combining equations from (11) to (15):

ẋ = Ax+ Buc
uc =

[
Mu δD

]T
A = K−1x

[
Gx +GF

(
GαG3 +Gγ

)]
B = K−1x

[
Gu GFGαGγGδ

]
(16)

The resulting linear model (16) is fully controllable since the
controllability matrix obtained from the pair (A,B∗), with
B∗ = K−1x Gu related to the controllable input Mu, is of full
rank.

III. CONTROL PROBLEM
This high-level controller is designed to compute moment
applied on yaw axis to keep the steering stability. This cor-
rective yaw moment is resultant of differences in the tire’s
longitudinal forces on left and right sides of vehicle. Since
there is a limit for the forces generated on tires, there are
constraints for the corrective yaw moment that must be taken
into account by the control algorithm. This imposes that the
control inputMu must satisfy:

Mmin
u ≤ Mu ≤ Mmax

u (17)

There is also a limit to the difference between consecutive
command updates. The design of high-level control does not
consider a specific actuation system. However, the control
algorithm must be able to take into account this limitation,
and thus the control input must satisfy:

1Mmin
u ≤ (Mu(k)−Mu(k − 1)) ≤ 1Mmax

u (18)

The corrective yaw moment is defined as the one that
minimizes a cost function that includes the actuation energy
and the yaw error error over a finite horizon, which are
predicted based on the linear model presented in Section II-B.
This cost function and the optimization problem is formulated
as a quadratic programming by following the MPC method.

FIGURE 3. Block diagram of control system.

IV. CONTROL DESIGN
The architecture of the proposed control system is presented
in Fig. 3. The MPC receives the current and desired states,
and calculates the corrective yaw moment required to keep
the steering stable. It is assumed that measures of yaw rate,
roll rate, and roll angle are available, whereas side-slip angle
is calculated from measures of lateral and front speed.

In the formulation of the MPC, the controller must define,
at each instant of sampling, the desired value of the regulated
states over the prediction horizon. In the optimal configura-
tion, obtained from the tuning of MPC coefficients presented
in Section VI-A, only the yaw and roll rates are included
within the regulated states. As rolling is an unwanted move-
ment that increases the rollover risk and decreases passenger
comfort, the desired roll rate is assumed equal to zero over
the prediction horizon, such that the cost function of the
optimization problem penalizes any value different from zero.
The desired yaw rate depends on the steering wheel angle
commanded by the driver in response to vehicle movement.
For a given vehicle, characterized by its geometric parameters
and cornering stiffness coefficients, the desired yaw rate can
be computed as follows [31]:

ψ̇d = min
(∣∣∣∣ uδf
l + lKuu2

∣∣∣∣ , ∣∣∣µgu ∣∣∣
)
sign(δf )

Ku =
m
l2

(
b
Cαr
−

a
Cαf

)
(19)

A. MPC FORMULATION
The MPC method used in this paper follows the formulation
presented by [16]. This method needs a discrete linear model
of vehicle dynamics, which is obtained from the discretiza-
tion of the linear model presented in Section II, and repre-
sented by:

x(k + 1) = Adx(k)+ Bduc(k) (20)

where x(k) and u(k) are the state and input at sampling instant
k , respectively, and Ad ∈ R4×4 and Bd ∈ R4×2 are state
and input discrete matrices, respectively. The next control
sequence over a prediction horizon N and the next states,
obtained by applying this control sequence, are represented
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by:

ũ(k) =


u(k)

u(k + 1)
...

u(k + N − 1)

 (21)

x̃(k) =


x(k + 1)
x(k + 2)

...

x(k + N )

 (22)

As shown in [16] the states at any sampling instant over the
prediction horizon can be obtained from the current states and
the future control sequence:

x(k + 1) = 8ix(k)+9 iũ(k) (23)

where 8i ∈ R4×2 and 9 i ∈ R4×nũ are the state and input
prediction matrices, respectively, which can be computed
from discrete model matrix as follows:

8i = Ai
d (24)

9 i =
(
Ai−1
d Bd . . . AdBd Bd

)T


5
(2,N )
1

5
(2,N )
2
...

5
(2,N )
i

 (25)

5
(n,N )
i =

(
0n×n(i−1) In×n 0n×n(N−i)

)
(26)

The regulated output vector can be any linear combination of
the states. The proposed ESC directly controls the yaw rate
and roll angle, therefore the regulated output is defined as
follows:

y(k) =
(
ψ̇ φ

)T
= Crx(k)

Cr =

[
0 1 0 0
0 0 0 1

]
(27)

The cost function of MPC formulation is defined depending
on current states x(k), desired output yd (k) = (φd 0) and
desired input ud . This can be expressed as:

J (k) =
N∑
i+1

∣∣yr (k + i)− yd (k + i)
∣∣2
Qy

+

N∑
i+1

∣∣∣5(2,N )
i ũ(k)− ud

∣∣∣2
Qu

(28)

in which, Qu and Qy are the matrices that weight the energy
of command and the errors of regulated output, respectively,
and ud the desired input. The desired yawmoment is assumed
to be zero and for the uncontrolled input, δD the desired value
is its current value.

The Equation (28) can be expanded in the classical rep-
resentation of quadratic programming with ũ as a decision
variable:

J (k) =
1
2
ũT (k)Hũ(k)+ FT (k)ũ(k) (29)

where

H = 2
N∑
i=1

[
8T
i C

T
r QyCr9 i + (9(2,N )

i )TQu(9
(2,N )
i )

]
F(k) = F1x(k)+ F2yd + F3yd

F1 = 2
N∑
i=1

8T
i C

T
r QyCr8i

F2 = −2
N∑
i=1

8T
i C

T
r QyCr5

(2,N )
i

F3 = 2
N∑
i=1

(5(2,N )
i )TQu (30)

The next step consists in defining the constraints on the
controlled and uncontrolled input variables. The MPC for-
mulation developed in this paper includes δD as part of the
command vector, however the ESC has no direct control of
the steering angle. To handle this scenario, the optimal δD
computed by the MPC is constrained such that the only pos-
sible optimal solution is equal to its current measured value.
Thus, one can define the constraints on the input variables
and its rates of change as follows:[

Mmin
u

δD(k − 1)

]
≤ uc(k) ≤

[
Mmax
u

δD(k − 1)

]
[
1Mmin

u
0

]
≤ uc(k + 1)− uc(k) ≤

[
1Mmax

u
0

]
(31)

The above expression also imposes that the MPC assumes
that the uncontrolled input δD is constant over the prediction
horizon.

B. MPC PARAMETERIZATION
In [16], parameterizations of MPC are proposed to increase
the computational efficiency by reducing the number of vari-
ables of QP solution. In the proposed controller employs the
exponential parameterization, in which the solution of the
optimal control inputs over the predication horizon are restrict
to the sum of few exponential terms:[

Mu(k + i)
δD(k + i)

]
=

[
p1(k)e−νTsi + p2(k)e−νTsi/(1+α)

pδ(k)

]
(32)

where k is the discrete time index that starts the pre-
diction horizon, ν and α are constant coefficients of expo-
nential parameterization, Ts is the sampling time, and p1,
p2 and pδ are the parameters to be optimized by the MPC
algorithm. Thus, instead of optimizing the whole control
sequence ũ(k) over the prediction horizon, the MPC needs
to optimize just the parameter vector defined by p(k) =[
p1(k) p2(k) pδ(k)

]T . Following this definition, the parame-
terized control vector is defined by:

uc(k + i) =
[
Mu(k + i)
δD(k + i)

]
=M(i)p(k)

M(i) =
[
e−νTsi e−νTsi/(1+α) 0
0 0 1

]
(33)
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And the parameterized control sequence over the predic-
tion horizon defined in Equation (21) can be expressed as
fallows:

ũ(k) = 5ep(k) 5e =

 M (0)
...

M (N − 1)

 (34)

As the target result of this parameterization, the cost func-
tion presented in Equation (28) comes down to a QP in terms
of p(k), i.e.:

J (k) =
1
2
pT (k)Hpp(k)+ FTp (k)p(k)

Hp = 5T
e H5e

Fp(k) = Fp1x(k)+ Fp2yd + Fp3ud
Fp1 = 5T

e F1

Fp2 = 5T
e F2

Fp3 = 5T
e F3 (35)

And the constraints to control inputs presented in Equa-
tion (31) lead to the following constraints for the parameter
vector:

5e

[
Mmin
u

δD(k − 1)

]
≤ 5ep(k) ≤ 5e

[
Mmax
u

δD(k − 1)

]
5e

[
1Mmin

u
0

]
≤ 5e(p(k + 1)− p(k)) ≤ 5e

[
1Mmax

u
0

]
(36)

And since the solution of the steering input is restrict to its
value measured at the beginning of the prediction horizon, the
solution is also constrained to pδ = δD(k).

The stability of parameterized control schemes was pre-
sented in [38], and the necessary and sufficient conditions
regarding the classical structure of the MPC were formal-
ized in the survey paper [15]. Such a situation requires a
substantial constraint at the final state with longer horizons
of prediction (tending to infinity) together with a penalty at
the end of the predicted trajectory. Besides, another neces-
sary condition generally requires weighting over the whole
state vector along the prediction trajectory. Thus, according
to [16], practical and feasible conditions for obtaining all nec-
essary and sufficient conditions for MPC-type strategies can
be quite challenging to obtain. As far as embedded systems
are concerned, such a scenario can prevent practical imple-
mentation of the MPC scheme since the resulting controller
may become unfeasible for real-time applications. For this
reason, an analysis of the influence of the prediction horizon
N as a function of the minimum computation time required to
carry out the optimization process efficiently is shown later.

C. ESC ACTIVATION CRITERIA
The MPC may give a non-zero command when the error of
regulated states is non-zero. To avoid unnecessary actuation
in maneuvers which states are different from its desired val-
ues, without risk of the driver losing control of the steering,

FIGURE 4. Flow chart of control development process adopted.

the ESC control is kept inactive when side-slip angle and
yaw error is not greater than a threshold. To avoid constant
switching of control activation, the ESC is activated when the
condition β > βth or ψe > ψeth is fulfilled for a minimum
period Ton, and it is deactivated when it is not fulfilled for a
minimum period Toff .

V. METHODOLOGY
The PIL platform was based on the framework proposed
by [39]. Fig. 4 illustrates the development and evaluation
process followed in this work.

As the MPC design is based on the vehicle model, the
first project stage is the definition of the reference vehicle
model. This model is linearized and discretized for obtaining
the discrete linear model needed for MPC design. Once the
reference model and the discrete linear model are defined, the
control algorithm is designed and implemented as a model for
computational simulation using Matlab/Simulink.

Model-in-the-loop (MIL) simulations are performed to
validate the control algorithm. In MIL, the whole control
system is implemented for computational simulation. And
test scenarios are simulated for observation of control effec-
tiveness. MIL simulation is performed until results show that
the proposed ESC can improve lateral stability. When the
results show that the lateral performance of a vehicle with
ESC assistance does not meet the requirements, the algorithm
is updated before the next MIL testing run.

Once the algorithm is approval in MIL tests, the proposed
controller is implemented as an embedded Linux software
for BeagleBoneBlack and submitted to Processor-in-the-loop
simulations. In this platform, the BeagleBoneBlack executes
and tests the controller together with a platform that runs
a Simulink Real-Time simulation of vehicle dynamics. The
whole procedure is repeated until the controller achieves the
required performance on improving lateral stability. When
the controller fails in embedded test due to algorithm error,
the later is updated, and all the development stages since MIL
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FIGURE 5. Vehicle models.

simulations are repeated. When the controller fails due to
implementation error, it is fixed, and just PIL simulations are
performed again.

The platform used to test the embedded control con-
sists of a host computer, a digital-analog converter PCI-
DAC6703DA2 and Ethernet connection. The host PC runs the
Simulink Real-Time environment, which is a real-time simu-
lation of vehicle response to control yaw-moment command.
Simulink Real-Time provides real-time updated signals read
by the controller, which are longitudinal speed, lateral speed,
yaw rate, roll rate, roll angle, and front wheels steering angle.
The PCI-DAC6703 is used to send such signals to the analog
inputs of the controller, which is the Beaglebone Black. And
Ethernet connection is used to send over User Datagram
Protocol (UDP) the yaw-moment given as control input to
host. Fig. 5 illustrates the proposed testbench.

A. INTELLIGENT DRIVER MODEL
The intelligent driver model presented in [40] is included in
the simulation environments to compute the steering wheel
angle commanded by the driver based on the vehicle states.
It is important to make clear that this model is not integrated
into the control algorithm and is only used to build the simu-
lation environments.

This model considers that the driver controls the movement
direction to achieve the needed trajectory for moving towards
a target point A at a distance La. The input signals measured
by the simulated driver are the current position yos, the desired
position yd , and yaw angle ψ . The Fig. 7 shows the block
diagram of control law used to simulate driver behavior to
obtain a steering wheel angle δD. The parameters of this
model are the distance La from the vehicle position to target
point, actuation delay Tk , and steering gainW that represents
driver expertise. Figures 6 and 7 illustrate this model.

VI. RESULTS
Simulationswere performed for the double lane change (DLC)
test of standard No. ISO 3888:1975 as presented in [40].
In this test, an attempt to maneuver is considered to be
successful when the vehicle does not exceed the bound-
aries of lateral displacement from the desired path. The
nonlinear model of vehicle dynamics presented in Section II
is used to simulate vehicle motions. The model presented

FIGURE 6. Illustration of driver modeling.

FIGURE 7. Block diagram of driver model.

TABLE 2. Parameters of simulation models of vehicle and driver.

in Section V-A is used for generating the steering wheel
commanded by an average human driver. Table 2 shows
the parameters used in the simulation of vehicle dynamics.
Table 3 shows the parameters of the linear model used in the
implementation of the control algorithms.

The command constraint of MPC algorithm is defined
to ensure that the ESC provides feasible vales of external
yaw moment. The feasibility limit is defined as presented
Section III, based on the limit of the longitudinal force
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TABLE 3. Parameters of the linear model used in control design.

FIGURE 8. Tire’s longitudinal force calculated by the Pacejka’s Magic
Formula and its linear approximation.

generated on tires. Figure 8 shows the chart of the Pacejka’s
Magic Formula, and its linear approximation for the coeffi-
cients presented in Table 2. According to this tire model, the
maximum longitudinal force obtained in the linear operation
of the tire is 1548N. And thus, the yaw moment obtained
when the difference between the longitudinal forces of the
tires on the left and right side of the vehicle is equal than 15%
of 1548 N given by:

0.15 · 1548N · (tf + tr )/2 = 326[Nm] (37)

in which tf and tr is the widths of the longitudinal and rear
track, respectively.

Following the criteria presented in Section III, the con-
straint of the yaw momentMth configured in MPC algorithm
must be less than 326 [Nm]. In this sense, the configuration
of Mth for all the tests presented in this paper is 250 [Nm].

A. CONTROLLER TUNING
In addition to testing the proposed controller, simulations
are useful for tuning of controller parameters. The MPC
effectiveness depends on the value of its parameters, such
as the weight matrices of QP cost function, Qu, and Qy,
the coefficients of exponential parameterization λ and α and
the prediction horizon N . Theoretically, a long prediction
horizon increases the capacity of ESC to act before a dan-
gerous driving condition happens, and also contributes to the
stability of MPC [15]. But in practical terms, the increasing
of prediction horizon increases the memory required to store
the QP matrices and the latency of the algorithm to solve the
QP problem, which decreases the stability performance.

The proposed controller was implemented as software for
embedded Linux running on ARM CORTEX A8 of Bea-
gleBoneBlack. Th parameters Qu, Qy, λ, α and N were
defined with an iterative procedure. The following procedure
describes the tuning method starting with the prediction hori-
zon N = 15.

1) Tuning of Qu, Qy, ν, α:
The control model of MIL simulation is configured
with the chosen horizon. The others parameters are
defined by the minimization of the accumulation of
states square error, path square error and yaw moment
energy, obtained from results of MIL simulation for
double lane change maneuver (standard No. ISO
3888:1975 as presented in [40]) at 80km/h, 100km/h,
and 120km/h.

2) Profiling the effective computation times
The controller is configured with the optimum param-
eters found in the previous step. Than it is tested
embedded on the BeagleBoneBlack for each horizon
N ∈ [15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65]. The
profiling tool of GNU ARM embedded toolchain is
used during these simulations to measure the command
update time achieved for each horizon. Since, the PIL
platform enables the test of update times multiple of
the sampling time of the real-time simulation of vehicle
response (0.8ms), the effective computation time is
defined as the minimum multiple of 0.8ms greater than
the measured computation time.

3) Measure of the stability performances
The mean square error (MSE) of the lateral displace-
ment is measured, from results of MIL simulations of
the DLC maneuver at 120km/h, for the control model
configured with each prediction horizon and its effec-
tive update time measured in the previous step. The
horizon that gets the smallest MSE measured is the
chosen one.

4) Completion and iteration
The procedure repeats while the chosen horizons of the
current and the last iterations are not the same.

Figure 9 shows the results obtained in the last iteration of
this tuning procedure. One can see that for horizons smaller
than 50 sampling times, the MSE of lateral displacement
decreases as long as the horizon increases. The effect of
increasing N clearly improves the system performance since
model-plant mismatches are not significant, and higher pre-
diction horizons are desirable for stability and optimally [15].
On the other hand, for N > 50, model uncertainties become
more significant, and the closed-loop performance starts
degrading since the mean square error of lateral displacement
rises almost exponentially. Based on these results, the optimal
prediction horizon of the proposed control scheme was set to
N = 50.
The tables 4 and 5, show the optimal configuration

obtained from the tuning procedure for the MPC algorithm
implemented with a linear model that includes the roll motion
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FIGURE 9. Evolution of minimum computation time and mean square error of lateral displacement depending on the prediction horizon N .

TABLE 4. Configuration of the MPC-based ESC implemented with a
prediction model that includes the roll motion.

TABLE 5. Configuration of the MPC-based ESC implemented with a
prediction model that does not include the roll motion.

(i.e., roll control on) and with a linear model that does not
include the roll motion (i.e., roll control off). In the configu-
ration of the algorithmwith roll control on, the optimal matrix
QY weights only errors in yaw rate and roll angle, so the
regulated output matrix CC is defined such that only these
states are included within the regulated states. And in the
configuration of theMPCwith roll control off, the optimalQy
weights only the yaw rate, thus the Cc matrix is defined such
that only the yaw rate is regulated. Since the use of a simpler
prediction model reduces the computational complexity of
theMPC algorithm, the calculation time of 12.2 ms measured
for the MPC with roll control off is smaller than the 13.6 ms
measured for the MPC with roll control on.

The parameters of activation/deactivation criteria were
defined from manual adjustment. Table 6 shows the configu-
ration of the activation criteria.

This tuning procedure was also performed to find the
optimal configuration for the MPC without parameterization.

TABLE 6. Configuration of the ESC activation and deactivation criteria.

However, it is worth mentioning that there is no configura-
tion in which the MPC without parameterization, running on
embedded hardware based on the ARMCortex A8 of Beagle-
BoneBlack Rev C, is feasible or effective to avoid handling
destabilization in real-time simulation. For this reason, only
simulations using parameterized MPC are presented in this
section.

In this case, to study the benefits of MPC capabilities
to predict the vehicle motion and deal with command con-
straints, simulations also were performed for the proposed
control architecture, replacing theMPCwith an LQR control,
as presented in [41]. The LQRwas chosen because it is also an
optimal control technique, that although it does not have the
benefits of MPC, its control algorithm has low computational
complexity that leads to higher command updating rate. This
comparison is interesting because the command update time
is one of the main challenges for applying the MPC in real-
time applications, for which the proposed system intends to
present a solution.

For a fair comparison, the LQR is set up to run with the
higher update rate enabled by the PIL platform, which is the
sample time of the real-time simulation of vehicle response
(0.8ms). It is derived from the same linear model that MPC,
and the weighting matrices Qy and QU are optimized by the
following procedure:

1) Measure the calculation time of the LQR running in the
ARM Cortex A8.
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FIGURE 10. Results from MIL simulation of DLC at 80km/h for vehicle with MPC-based ESC. In this maneuver, the ESC actuation is not required. The target
yaw rate is computed by Eq. 19, which depends on the driver’s behavior in steering wheel control during the maneuver. The indexes f. and r. denote the
front and rear tires, respectively.

TABLE 7. Configuration of the LQR-based ESC.

2) Find the weighting matricesQy andQu that minimizes
a cost function defined based on the accumulation of
lateral displacement square error obtained from MIL
simulations of DLC maneuvers at 80 km/h, 100 km/h
and 120 km/h.

The optimization problem of the second step of the LQR
tuning procedure is solved by using the Particle Swarm Opti-
mization (PSO), to perform a global search for the optimal
values, and the interior point method, to perform linear
programming towards the PSO results for fine-tuning. Table 7
shows the results of LQR tuning, in which the command
update period equal to 0.5 ms is 27.2 times faster than the
rate obtained with the MPC with roll control on.

B. RESULTS FROM MIL SIMULATIONS
The DLC at 80 km/h was simulated, in MIL environment,
for a vehicle with proposed ESC, to observe if the controller
acts unnecessarily or impairs steering when a driver is able to
drive without assistance. MIL simulations of DLC at higher
speeds also were performed to compare the effectiveness in
improving the lateral stability of LQR-based ESC, MPC-
based ESC with roll control on and off, and MPC-based ESC
with roll control on without the exponential parameterization
applied to reduce the calculation time.

FIGURE 11. Vehicle trajectory from MIL simulation of DLC maneuver at
80 km/h.

The DLC at 80 km/h was simulated to observe if the ESC
effect unnecessary interferes on steering in a scenario where
the driver can perform the maneuver without ESC assistance,
The Figures 10 and 11 show the result from this simulation.

1) DLC AT 80 km/h
From results shown in Fig. 10, where the yaw moment given
as control signal remains equal to zero, and from the vehi-
cle’s trajectory shown on Fig. 11, where the DLC test is
successfully performed, one can confirm that driver is able
to perform this maneuver without ESC assistance. Therefore,
the obtained yaw rate is command only by the driver steering
command, and it remains close to its desired valued given by
the Equation ((19)). This result indicates a coherence between
models of driver, vehicle and desired yaw rate. The actuation
remains null because of the control algorithms

The side-slip angle β and roll angle φ of the vehicle body
and the tire slip angles α remain smaller than 5 degrees during
all the simulation, whichmeans that the vehicle states remains
within the trust region of the vehicle-linear-prediction
model.
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FIGURE 12. Results from MIL simulation of DLC at 100km/h for vehicle without ESC, with MPC-based ESC and with LQR-based ESC. The target yaw rates
are computed by Eq. 19, which depends on the driver’s behavior in steering wheel control during the maneuver. The indexes f. and r. denote the front and
rear tires, respectively.

FIGURE 13. Vehicle trajectory from MIL simulation of DLC maneuver at
100 km/h for vehicles without ESC, with MPC-based ESC and with
LQR-based ESC.

2) DLC AT 100 km/h
TheDLC at 100km/hwas simulated to observe the ESC effec-
tiveness in a scenario where initially the vehicle response is
at the trim point of the prediction model, and the driver is not
able to perform the double lane changing without assistance.
The Figures 12 and 13 show the results obtained from this
simulation. From the trajectory shown in Fig. 13, and side-
slip, yaw rate, and roll rate angle shown in Fig. 12, one can
confirm that the driver loses control of the vehicle without
ESC assistance, whereas with LQR or MPC-based ESCs, the
driver does not lose the vehicle control. With both controllers,
the side-slip and the roll angles of the vehicle body and tires
slip angle remains smaller than 5 degrees, which means that
vehicle states remain in the trust region of the vehicle-linear-
prediction model.

By comparing the results obtained with LQR and
MPC-based ESCs shown in Fig. 12, one can see that even
running at 22.4 times lower command update rate, better lat-
eral stability improvements are achieved with the MPC since
the vehicle with MPC-based ESC exhibits smaller side-slip
and tire slip angles than those obtained with LQR. One can

FIGURE 14. Vehicle trajectory from MIL simulation of DLC maneuver at
100 km/h for vehicles with MPC-based ESCs with roll control on and off.

also see that the steering input in results for MPC is lower
than the obtained for LQR. This means that the driver needs
less effort to drive when assisted by theMPC-based ESC, i.e.,
better maneuverability improvement is also achieved with the
MPC-based ESC.

Besides, only the vehicle equipped with the MPC-based
ESC performs the maneuver without exceeding the lat-
eral displacement limits from the desired trajectory. The
LQR-based ESC exhibits a more aggressive actuation,
achieving the saturation of yaw moment most of the simu-
lation time, and, even so, it is not able to allow the maneuver
without slipping away from the DLC test boundaries.

The DLC at 100 km/h also was simulated for the
MPC-based ESC with roll control disabled. The Fig. 14
shows the trajectory obtained from the simulation of DLC at
100km/h performed for vehicles with proposed MPC-based
ESC with roll control on and off. One can see that the
vehicles equipped with both controllers are able to perform
this maneuver successfully. As, in this scenario, the stability
improvements achieved with both the controllers are almost
the same, no benefits can be noted for the inclusion of roll
control, but at least no performance losses are observed.
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FIGURE 15. Results from MIL simulation of DLC at 120km/h for vehicles without ESC, with MPC-based ESC and with LQR-based ESC. The target yaw rates
are computed by Eq. 19, which depends on the driver’s behavior in steering wheel control during the maneuver. The indexes f. and r. denote the front and
rear tires, respectively.

FIGURE 16. Vehicle trajectory from MIL simulation of DLC maneuver at
120 km/h for vehicles without ESC, with MPC-based ESC and with
LQR-based ESC.

3) DLC AT 120 km/h
TheDLC at 120km/hwas simulated to test the ESC on control
of the vehicle at a higher speed than the trim point of the
prediction model. The Figures 15 and 16 show the results
obtained for vehicles without ESC assistance, and with LQR
and MPC-based ESC.

From the trajectory shown in Fig. 16, obtained for the
vehicle without ESC, one can see that the driver is not able
to perform the double lane changing at 120 km/h without
losing the vehicle control. The trajectories obtainedwith LQR
and MPC-based ESCs have different performances, but with
both controllers, the results show that the driver does not lose
vehicle control. The vehicle with LQR-based ESC exhibits a
rude escape from DLC boundaries, whereas the vehicle with
MPC-based ESC briefly crosses the bounds of DLC once at
the exiting of the second lane changing.

From the results shown 15, it is possible to see that the
MPC-based ESC exhibits a softer actuation on yaw moment
input, and is still more efficient in reducing of side-slip and
roll angles error. With the MPC-base ESC, the side slip and
roll angles of the vehicle body and the tire slip angles remain
smaller than 5 degrees, which means that the effectiveness of

the stability control keeps the vehicle states in the trust region
of the vehicle-prediction-linear model.

The DLC at 120 km/h also was simulated for the
MPC-based ESC with roll control disabled. The results
obtained with roll control on and off are presented Fig. 17 and
Fig. 18. From which one can see the benefits of including roll
control, since the trajectory presented in in Fig. 18 obtained
from simulation with roll control off exhibits a larger error at
the exit of the second lane changing than the obtained with
roll control on. In the states of vehile dynamics presented
in Fig. 17 obtained from these simulations, one can see that
the vehicle equiped with an ESC without roll control has a
higher roll rate, which means a higher risk of rollover and
lower passenger comfort. In addition to the extra roll rate,
the vehicle without roll control also has a higher yaw rate,
side-slipping, and tire-slipping, whichmeans a lower stability
performance. And comparing the energy of the steer angle
signal controlled by the driver, the amplitude without roll
control is greater than with roll control, which means that the
driver needs to make an extra effort to maneuver. Therefore,
in this scenario, stability performance is greatly improved by
the inclusion of roll control.

The increased influence of roll motion on the vehicle
at high speeds is theatrically expected, because, at higher
speeds, the roll rate has a stronger influence on yaw rate and
tire dynamics, because it affects the vertical load transference
between tires, which changes the lateral force acting on tires.

4) DLC AT 110 km/h WITH VEHICLE PARAMETERS
DIVERTING FROM PREDICTION MODEL
The effectiveness of proposed controller on a vehicle whose
response is different from that predicted by linear model
also is evaluated. MIL simulation was performed for DLC at
110km. Besides the different speed, the vehicle simulated in
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FIGURE 17. Results from MIL simulation of DLC at 120km/h for vehicles with MPC-based ESCs with roll control on and off.The target yaw rates are
computed by Eq. 19, which depends on the driver’s behavior in steering wheel control during the maneuver. The indexes f. and r. denote the front and rear
tires, respectively.

FIGURE 18. Vehicle trajectory from MIL simulation of DLC maneuver at
120 km/h for vehicles with MPC-based ESCs with and with roll control on
and off.

this scenario has mass, center of mass position and tire-road
friction different from values assumed by control algorithms.
Parameters used in this simulation are shown in Table 8,
parameters not shown in this table are equal to parameters
shown on Table 2. The Fig. 19 shows results from this simu-
lation. It is possible to see that performance decreases in com-
parison with vehicle whose parameters match the prediction
model’s parameters, but ESC remains effective in prevent the
driver from losing the control.

C. RESULTS FROM EMBEDDED SIMULATIONS
The PIL simulations were performed to test the algorithm
running onARMCortexA8 of BeagleBoneBlack RevC, with
0.8ms sample time of feedback signals. This sampling time is
the fastest rate achieved by the platform running a real-time
simulation of vehicle response. The Figure 20 shows the
results obtained from this simulation of DLC at 110 Km/h.
Besides disturbances in acquisition of feedback signals read
by the controller through analog inputs, this scenario test
the control in presence of disturbances in vehicle response

TABLE 8. Parameters of simulated vehicle configured in tests of
MPC-based ESC in presence of prediction model uncertainties. This table
shows the non-nominal parameters and their deviations (column Dev.)
from the nominal values shown in the table 2.

in respect with prediction model, due to difference between
simulated vehicle speed and constant speed assumed by pre-
diction model.

The Figure 20 shows the results from PIL simulation
in comparison with MIL simulation. The control signal
observed in MIL and PIL simulations are different from each
other. This can be understood as the effect of disturbances in
control activation when errors are close to decision threshold.
However, from observation of yaw and roll rates, side-slip
angle and the trajectory during maneuver, one can see that
performance in embedded testing is close to the observed in
MIL simulation.

1) COMPARISON BETWEEN MPC-BASED ESCs WITH AND
WITHOUT PARAMETERIZATION
To demonstrate the benefits of exponential parameterization,
DLC maneuver at 120 km/h was simulated for MPC-based
ESC, with roll control, and without parameterization. In such
a scenario, the computation time increased from 13.6 ms
to 231 ms. The trajectory obtained from this simulation is
shown in Figure 21, where only the MPC with exponential
parameterization is effective in avoiding the instability. This
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FIGURE 19. Results from MIL simulation of DLC at 110km/h with parameters equal the nominal values assumed by prediction model, and with prediction
model uncertainties. In the simulation model uncertainties, the simulated vehicle is configured with non-nominal CG position, mass and tire-road friction
shown on Table 8.

FIGURE 20. Results from PIL and MIL simulation of DLC at 110 km/h.The target yaw rates are computed by Eq. 19, which depends on the driver’s behavior
in steering wheel control during the maneuver.

FIGURE 21. Vehicle trajectory from MIL simulation of DLC maneuver at
120 km/h for MPC-based ESC with roll control with exponential
parameterization, whose calculation time is equal to 13.6 ms, and
without parameterization, whose calculation time is equal to 231.2 ms.

is because the control without parameterization has an insuf-
ficient update rate of the commands.

VII. CONCLUSION
In this paper, a parameterized constrained MPC strategy for
an upper-level ESC system was presented and discussed.
The proposed approach uses as a prediction model, a 3DOF
model that considers lateral, yaw, and roll motions linearized
for constant longitudinal speed and considering small roll
and side-slip angles. The main contribution of this work
lies in to use exponential parameterization of the input
vector to reduce the complexity of the optimization prob-
lem without loss of performance. The parameterization con-
tributes to reducing the computation time from 231.2 ms
to 13.6, and thanks to that, the stability performance is
increased. Thus, this approach makes it possible to imple-
ment this control strategy in commercial vehicles that have
limited processing hardware. Results from the embedded
testing show that the proposed control algorithm is com-
putationally efficient for real-time applications, even run-
ning in a hardware with limited resources. These results
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also demonstrated the controller’s robustness to acquisition
system errors.

The results obtained from MIL simulations show that the
proposed algorithm does not interfere when it is not required;
it can prevent the driver from losing control of the vehicle.
Moreover, its performance remains in the presence of distur-
bances in vehicle response with respect to a prediction model.
The stability improvement achieved by addressing the MPC
technique was better than the obtained with similar LQR-
based ESC. The comparison between for DLC at 100 km/h
and 120 km/h indicates that for lower speeds, the performance
of ESC with and without roll control is almost the same. For
higher values of speed, the enabling of roll control consider-
ably improves the stability performance without significant
changes regarding the computational cost of proposed MPC-
based ESC.

Future works consist of implementing a real-time estima-
tion of the tire-road friction coefficient by replacing the actual
fixed value used in the tiremodel. Another point to investigate
is to develop a lower-level algorithm to control rotation torque
of each wheel, such that the resultant yaw moment equals the
correcting yaw moment. Further works will also investigate
the use of a lateral stability index to analyze the control
performance to re-define the control objectives and the ESC
activation criteria.
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