Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/43499
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_BifurcationAnalysisModified.pdf555,33 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSiyu Chen-
dc.contributor.authorSantos, Carlos Alberto Pereira dos-
dc.contributor.authorMinbo Yang-
dc.contributor.authorJiazheng Zhou-
dc.date.accessioned2022-04-19T10:28:21Z-
dc.date.available2022-04-19T10:28:21Z-
dc.date.issued2022-
dc.identifier.citationSiyu Chen et al. Bifurcation analysis for a modified quasilinear equation with negative exponent. Advances in Nonlinear Analysis, v. 11, n. 1, p. 684-701, 2022. DOI: https://doi.org/10.1515/anona-2021-0215. Disponível em: https://www.degruyter.com/document/doi/10.1515/anona-2021-0215/html. Acesso em: 18 abr. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/43499-
dc.language.isoInglêspt_BR
dc.publisherDe Gruyterpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleBifurcation analysis for a modified quasilinear equation with negative exponentpt_BR
dc.typeArtigopt_BR
dc.subject.keywordSchrödinger, Equação dept_BR
dc.subject.keywordExpoentept_BR
dc.rights.licenseOpen Access. © 2021 Siyu Chen et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License (CC BY).pt_BR
dc.identifier.doihttps://doi.org/10.1515/anona-2021-0215pt_BR
dc.description.abstract1In this paper, we consider the following modified quasilinear problem: {−∆u − κu∆u2 = λa(x)u−α + b(x)u β in Ω, u > 0 in Ω, u = 0 on ∂Ω, where Ω ⊂ ℝN is a smooth bounded domain, N ≥ 3, a, b are two bounded continuous functions, α > 0, 1 < β ≤ 22* − 1 and λ > 0 is a bifurcation parameter. We use the framework of analytic bifurcation theory to obtain an analytic global unbounded path of solutions to the problem. Moreover, we get the direction of solution curve at the asmptotic point.pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.