Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/43379
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: An adaptive neural identifier with applications to financial and welding systems
Auteur(s): Gularte, Kevin Herman Muraro
Muñoz Chávez, Jairo José
Vargas, José Alfredo Ruiz
Alfaro, Sadek Crisóstomo Absi
Assunto:: Teoria de Lyapunov
Redes neurais (Computação)
Date de publication: 2021
Editeur: Springer
Référence bibliographique: GULARTE, Kevin Herman Muraro et al. An adaptive neural identifier with applications to financial and welding systems. International Journal of Control, Automation and Systems, v. 19, p. 1976–1987, 2021. DOI: https://doi.org/10.1007/s12555-020-0081-x. Disponível em: https://link.springer.com/article/10.1007/s12555-020-0081-x. Acesso em: 12 abr. 2022.
Abstract: This paper considers the online identification problem of uncertain systems. Based on parallel and series-parallel configurations with feedback and by using Lyapunov arguments, a unified identification algorithm is introduced to ensure the boundedness of all associated errors and convergence of the state estimation error to an arbitrary neighborhood of the origin. The main peculiarity of the proposed algorithm lies in allowing the adjustment of the identification transient by using parameters that are not related to the residual state error. Two examples are deemed to validate the theoretical results and show the relevance of the application of the proposed methodology for online weld geometry prediction.
Licença:: ©ICROS, KIEE and Springer 2021
DOI: https://doi.org/10.1007/s12555-020-0081-x
metadata.dc.relation.publisherversion: https://link.springer.com/article/10.1007/s12555-020-0081-x
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/43379/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.