Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/42025
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_RafaelKojiVatanabeBrunello.pdf4,69 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorLlanos Quintero, Carlos Humberto-
dc.contributor.authorBrunello, Rafael Koji Vatanabe-
dc.date.accessioned2021-09-03T14:30:25Z-
dc.date.available2021-09-03T14:30:25Z-
dc.date.issued2021-09-03-
dc.date.submitted2021-04-07-
dc.identifier.citationBRUNELLO, Rafael Koji Vatanabe. Nonlinear moving-horizon state estimation for hardware implementation and a model predictive control application. 2021. 69 f., il. Dissertação (Mestrado em Sistemas Mecatrônicos)—Universidade de Brasília, Brasília, 2021.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/42025-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2021.pt_BR
dc.description.abstractNesta dissertação, exploramos a aplicação de redes neurais artificiais de funções de base radial (RBFs) embutidas em hardware para estimação de estados e controle em tempo real utilizando os algoritmos de Moving-Horizon Estimation(MHE) e Model Predictive Control (MPC). Esses algoritmos foram posteriormente aproximados por RBFs e implementados em um Field Programmable Gate Array (FPGA), que tem mostrado bons resultados em termos de precisão e tempo ˜ computacional. Mostramos que a estimativa de estado usando a versão aproximada do MHE ˜ pode ser executada usando um kit em escala de laboratório de aproximadamente 500 kHz para ´ um pendulo invertido a uma taxa de clock de cerca de 110 MHz. A latência para fornecer uma estimativa pode ser reduzida ainda mais quando FPGAs com clocks mais altos são usados, pois a ˜ arquitetura da rede neural artificial e inerentemente paralela. Após uma inspeção mais detalhada, ˜ descobriu-se que era possível reduzir o custo da área de chip trocando a função de custo por uma ˜ com resultados mais facilmente representáveis. Ele poderia então utilizar uma representação em ˜ 32 bits e o modulo CORDIC poderia ser removido, usando apenas a aproximação mais simples da ˜ serie de Taylor de 2 ´ ª ordem. Em seguida, expandimos isso, investigando a ideia de usar uma única rede neural para substituir tanto o controle quanto o estimatidor de estados. Comparado a um MPC com informações completas, sua versão utilizando o MHE não teve um bom desempenho contra ˜ ruídos de saída. A princípio não foi possível aproximar o controle e a estimativa do pêndulo com um bom resultado, porem ao separar o controle em duas partes obtivemos melhores resultados. Por fim, verificamos que tal rede neural foi capaz de estabilizar o sistema de pendulo invertido, ˆ mas não de aproximar sua parte oscilante n ˜ ao linear. A solução aqui apresentada ˜ e encorajada a ser estendida para sistemas mais complexos e não lineares, uma vez que uma arquitetura com ˜ complexidade razoável é encontrada para a rede neural artificial para ser implementada.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).pt_BR
dc.language.isoInglêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleNonlinear moving-horizon state estimation for hardware implementation and a model predictive control applicationpt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordFiltragempt_BR
dc.subject.keywordMoving-horizon State Estimatorpt_BR
dc.subject.keywordNonlinear model predictive controlpt_BR
dc.subject.keywordRedes neuraispt_BR
dc.subject.keywordArquiteturas de computador embarcadaspt_BR
dc.subject.keywordRadial-basis functionpt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.contributor.advisorcoAyala, Helon Vicente Hultmann-
dc.description.abstract1In this dissertation, we explore the application of radial basis functions (RBFs) artificial neural networks embedded in hardware for real-time estimation and control algorithms as the Moving- Horizon Estimation (MHE) and the Model Predictive Control (MPC). These algorithms are then approximated using RBFs and implemented in a Field Programmable Gate Array (FPGA), which has shown good results in terms of accuracy and computational time. We show that the state estimate using the approximate version of the MHE can be run using a laboratory-scale kit of approximately 500 kHz for an inverted pendulum at a clock rate of about 110 MHz. The latency to provide an estimate can be further reduced when FPGAs with higher clocks are used as the artificial neural network architecture is inherently parallel. Upon further inspection, it was found to be possible to reduce the chip area cost by switching the cost function for one with more easily representable results. It could then utilize a 32-bits representation and the CORDIC module could be removed, using instead only the simpler 2o order Taylor approximation. We then expand upon this, probing at the idea of using a single neural network to substitute both the control and state-estimation. Compared to a MPC with full information, its version utilizing the MHE did not perform well against output noises. At first, it was not possible to approximate the pendulum control and estimation with a good result, however when separating the control in two parts we gained better outcomes. Lastly, we verify that such a neural network was capable of stabilizing the inverted pendulum system, but not of approximating the non-linear swing-up part of it. The solution herein presented is encouraged to be further extended for more complex and nonlinear systems, given that an architecture is found for the artificial neural network with reasonable complexity to be implemented.pt_BR
dc.contributor.emailrafaelkvb@gmail.compt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Mecânica (FT ENM)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Sistemas Mecatrônicospt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.