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RESUMO

Nesta dissertagao, exploramos a aplicacao de redes neurais artificiais de funcdes de base radial
(RBFs) embutidas em hardware para estimacao de estados e controle em tempo real utilizando
os algoritmos de Moving-Horizon Estimation(MHE) e Model Predictive Control (MPC). Esses
algoritmos foram posteriormente aproximados por RBFs e implementados em um Field Pro-
grammable Gate Array (FPGA), que tem mostrado bons resultados em termos de precisio e tempo
computacional. Mostramos que a estimativa de estado usando a versdo aproximada do MHE
pode ser executada usando um kit em escala de laboratorio de aproximadamente 500 kHz para
um péndulo invertido a uma taxa de clock de cerca de 110 MHz. A laténcia para fornecer uma
estimativa pode ser reduzida ainda mais quando FPGAs com clocks mais altos sdo usados, pois a
arquitetura da rede neural artificial € inerentemente paralela. Apds uma inspecdo mais detalhada,
descobriu-se que era possivel reduzir o custo da drea de chip trocando a funcio de custo por uma
com resultados mais facilmente representaveis. Ele poderia entdo utilizar uma representaciao em
32 bits e 0 médulo CORDIC poderia ser removido, usando apenas a aproximacao mais simples da
série de Taylor de 2* ordem. Em seguida, expandimos isso, investigando a ideia de usar uma Unica
rede neural para substituir tanto o controle quanto o estimatidor de estados. Comparado a um MPC
com informag¢des completas, sua versao utilizando o MHE nao teve um bom desempenho contra
ruidos de saida. A principio ndo foi possivel aproximar o controle e a estimativa do péndulo com
um bom resultado, porém ao separar o controle em duas partes obtivemos melhores resultados.
Por fim, verificamos que tal rede neural foi capaz de estabilizar o sistema de péndulo invertido,
mas nao de aproximar sua parte oscilante nao linear. A soluc¢do aqui apresentada é encorajada
a ser estendida para sistemas mais complexos e ndo lineares, uma vez que uma arquitetura com
complexidade razodvel € encontrada para a rede neural artificial para ser implementada.

Palavras-chave:Estimacao e filtragem, Moving-horizon State Estimator, Nonlinear model
predictive control, Redes neurais, Arquiteturas de computador embarcadas, Radial-basis
function, FPGAs



ABSTRACT

In this dissertation, we explore the application of radial basis functions (RBFs) artificial neural
networks embedded in hardware for real-time estimation and control algorithms as the Moving-
Horizon Estimation (MHE) and the Model Predictive Control (MPC). These algorithms are then
approximated using RBFs and implemented in a Field Programmable Gate Array (FPGA), which
has shown good results in terms of accuracy and computational time. We show that the state
estimate using the approximate version of the MHE can be run using a laboratory-scale kit of
approximately 500 kHz for an inverted pendulum at a clock rate of about 110 MHz. The latency
to provide an estimate can be further reduced when FPGAs with higher clocks are used as the
artificial neural network architecture is inherently parallel. Upon further inspection, it was found
to be possible to reduce the chip area cost by switching the cost function for one with more
easily representable results. It could then utilize a 32-bits representation and the CORDIC module
could be removed, using instead only the simpler 2° order Taylor approximation. We then expand
upon this, probing at the idea of using a single neural network to substitute both the control and
state-estimation. Compared to a MPC with full information, its version utilizing the MHE did
not perform well against output noises. At first, it was not possible to approximate the pendulum
control and estimation with a good result, however when separating the control in two parts we
gained better outcomes. Lastly, we verify that such a neural network was capable of stabilizing
the inverted pendulum system, but not of approximating the non-linear swing-up part of it. The
solution herein presented is encouraged to be further extended for more complex and nonlinear
systems, given that an architecture is found for the artificial neural network with reasonable
complexity to be implemented.

Keywords:Estimation and filtering, Moving-horizon State Estimator, Nonlinear model
predictive control, Neural networks, Embedded computer architectures, Radial-basis func-
tion, FPGAs
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1 INTRODUCTION

The state space approach has had a central role in modern control methods (Bennett 1996),
due to, among other reasons, its generality in dealing with complexity of system orders and
number of inputs. The state space representation was seminal for the inception of optimal
control (Lewis, Vrabie e Syrmos 2012) and filtering (Kalman 1960) methods. Since then, however,
control scientists and practitioners have felt that the inherent ability to handle complexity lead to
computationally intensive control laws. Model predictive control strategies are regarded as one of
the most important recent developments in the control field (Rakovi¢ e Levine 2019). Frequently
new methods in nonlinear optimal control are derived according to the model predictive control
philosophy, and so we met no decrease in computational complexity for methods that ideally
run in a deterministic clock frequency. Many methods have been devised in order to embed
such control laws, and very practical tools for C code generation, for example, are now available
with vast documentation and flexible GPL-3 software licenses (GNU General Public License-3)
(Andersson et al. 2019).

On the other hand, state estimation has close relation with the classical regulation prob-
lem, as it is in fact mathematically the same (dual) problem (Kalman 1960, Bennett 1996).
An analysis on the dual problem for the model predictive control is analysed and used in
(Goodwin et al. 2005, Alessandri, Baglietto e Battistelli 2008). The moving-horizon state esti-
mation (MHE) paradigm uses a sliding window of most recent measurements and a state prediction
to infer the state estimates (Rawlings, Mayne e Diehl 2017). This is conceptually different than
the Kalman original formulation, which uses solely one set of measurements made at a given time
instant in order to provide an estimate of the mean and covariance of the states of the system.
The advantages in terms of accuracy is generally recognized for moving-horizon approaches for
estimation when compared to its Kalman-based counterparts, in spite of the greater computational
effort (Haseltine e Rawlings 2005). In the receding-horizon approach, another name given to the
moving-horizon, the algorithm solves an optimization problem at each sampling instant, what
makes possible to take into account many measurements and explicitly the bounds in the states.
Naturally this advanced state estimation algorithm demands considerable amount of computational
resources to run in real-time. This hinders the application of advanced control and estimation
methods to embedded solutions and systems that may operate at high frequency rates such as
piezoelectric micromanipulators (Ayala et al. 2015), (Ayala, Rakotondrahe e Coelho 2018) and
vibration mitigation (Zori¢ et al. 2019).

In (Alessandri, Baglietto e Battistelli 2008) the authors propose a moving-horizon estimation
scheme for nonlinear state space systems with asymptotic convergence property. The results
presented in this paper include an approximate version of the filter, where the idea is that
the filter may be faced as a nonlinear function mapping from the observations to the state es-
timates. Artificial neural networks have also been employed to approximate Kalman-based



state estimation (Jazaeri e Nasrabadi 2015), or ad-hoc estimation mapping (Chen et al. 2018). In
(Alessandri et al. 2011) the authors thoroughly compare the optimal and approximate version of
the filter with artificial neural networks, showing overall better results when compared to the
standard extended Kalman filter. In fact, optimal control problems may be solved offline and
then estimated with universal approximators such as artificial neural networks in many useful
applications (Zoppoli et al. 2020). In the literature we can find works that address the real-time
implementation of advanced receding-horizon methods for estimation and control in embedded
platforms.

In (Stellato, Geyer e Goulart 2017) the authors implement a linear model predictive controller
on FPGA with four states and three inputs with approximate dynamical programming, reaching a
sampling time of 25 microseconds. (Abdollahpouri, Takécs e Rohal-Ilkiv 2017) runs a nonlinear
moving-horizon estimation scheme similar to the one in (Alessandri, Baglietto e Battistelli 2008)
on a Raspberry Pi in a vibration test-bench. To this end, the authors compiled C code and obtained
a sampling time of 10 ms for a system with 5 states and weak multiplicative nonlinearities. The
implementation on embedded hardware with ad-hoc architectures of the nonlinear receding-horizon
filter proposed in (Alessandri, Baglietto e Battistelli 2008, Alessandri et al. 2011) is still lacking
in the literature. Among the options, the radial basis function artificial neural network is an
universal approximator and with important results in terms of embedded hardware deployment, as
we review next.

In (Fan e Hwang 2013) the authors implement a fuzzy c-means and batch least squares algo-
rithm to train and run radial basis functions artificial neural networks on FPGAs. (Chou et al. 2013)
propose the use of the aforementioned neural network on hardware in order to control electrical
motors. In (Souza e Fernandes 2014) the authors investigate the implementation with fixed-point
precision calculations of a radial basis function artificial network on FPGAs and test it with the
classical XOR problem. (Kim e Jung 2015) propose an FPGA implementation for the backprop-
agation algorithm to tune the parameters of a radial basis function artificial neural network. In
(Kung, Than e Chuang 2018) the authors use a radial basis function artificial neural network in
order to adaptively identify a system in order to perform gain scheduling online for a 2-degres-
of-freedom positioning table. For a review of most recent work on deep learning deployments
on FPGAs and stacked auto-encoders case, see (Coutinho, Torquato e Fernandes 2019). In the
present work, in turn, we provide a novel architecture for radial basis function artificial neural
network when compared to a previous work (Ayala et al. 2017), by improving the number of
calculations in the output of the network and also optimizing the hardware usage in the calculations
of the neuron. As the calculations of the neurons and the whole network are the most important,
we provide improvements in the aspect of hardware implementation of artificial neural networks.
It is worth noting that our architecture uses floating-point representation, which offers greater
dynamic-range than fixed-point representation, and therefore being suitable for control and robotics
applications. To do that we have used the parameterized library proposed in (Muioz et al. 2010),
which allows the user to set the numerical representation size depending on the precision required
by the application.



1.1 PROBLEM DEFINITION

The moving-horizon state estimator was contrived primarily in academia, as opposed to its
dual problem the MPC (Allgower et al. 1999), it is also less popular and has not been researched
and applied as much as the MPC. Both have similar complexity and computational cost problems,
however, while the MPC is studied and developed both in academia and the industry, the MHE is
mostly disregarded for the simpler and faster Kalman filter and its variations. Fortunately, most of
the breakthroughs for the MPC are also applicable to the MHE.

Moreover, the ones that do research on the topic focus on what is considered its main challeng-
ing issues, improving its optimization algorithm, the design of its arrival cost function, and the
performance analysis of the estimation (Zou et al. 2020). The latter two are mostly theoretical and
academic problems, and while the former hit upon the application problems it narrows it down too
much. The enhancement desired from the optimization algorithm is mainly related to its speed, or
its inability to run fast enough on most industrial online systems. As such, the problem this work
tries to solve is to attain a real-time implementation of the moving-horizon approach, boosting its
speed while retaining its results.

1.2 MOTIVATION

This work strives to overcome some of the shortcomings of the Moving-horizon Estimation
method (MHE), mainly its high computational cost and time inefficiency for real-time applications.
It also tries to promote and encourage creative thinking to circumvent this kind of theorical
difficulties using more practical approaches. In this way, a version of the MHE can be used to
solve other types of problems that require state estimators. Various applications in the areas of
control, automation, and robotics can benefit from this purpose.

In this direction, in LEIA (Laboratory of Embedded System and Integrated Circuit Applications)
belonging to GRACO (UnB Automation and Control Group), several research lines can take
advantage of the results of this work.

1.3 OBJECTIVES

1.3.1 General Objective

In the present work, we evaluate the real-time implementation of the approximate filter proposed
in (Alessandri, Baglietto e Battistelli 2008, Alessandri et al. 2011) for the first time, to the best of
our knowledge, in FPGAs using new architectures developed to implement an artificial neural
network. To this end, we improved a previous implementation of a radial basis function artificial
neural network made by the authors in (Ayala et al. 2017), by minimizing the use of resources for



calculating the output of each neuron of the artificial neural network and also adapting it to the
multiple-output case needed for the moving-horizon state estimation.

In order to take one step further to a real application and use of the MHE, it was initially
intended to utilize it on an inverted pendulum didactic benchmark. However, with the COVID-19
pandemic happening we decided it was best to focus on another possibility that could be worked on
from home. So, as an alternative, we employ it together with a Model Predictive Control (MPC),
taking advantage of a previous work developed in the Group (Sampaio 2018).

Afterward, the same steps for making an approximate ANN is made, but this time trying to
approximate the results of both estimation and control as a single network.

1.3.2 Main Objectives

The main objectives are divided into two central development cycles. In the first one, referring
to the implementation of the approximate moving-horizon estimator, we have:

* Develop the algorithm for the neural network moving-horizon estimator in the high-level
programming language (Matlab) for validation of the model and case studies;

* Devise training and tunning procedures for the radial-basis function that approximates the
MHE behavior;

* Adapt and generate the RBF implementation in FPGA on (Ayala et al. 2017) for the multiple
outputs case scenario;

* Validate the system’s performance in software and Hardware-in-the-loop (HIL) simulations.

In the second cycle, where we attempt to do the same with a combination of the moving-horizon
control and estimator, we have:

* Produce a code that implements the model-predictive control (MPC) used in (Ayala et al. 2016)
with the MHE in the high-level programming language (Matlab) for validation of the model
and case studies;

* Design tunning procedures for the MPC parameters;

* Develop the algorithm for the neural network approximation of the MPC with MHE in the
high-level programming language (Matlab) for validation of the model and case studies;

* Devise training and tunning procedures for the RBF that approximates the MPC with MHE
behavior as one singular neural network;

* Generate the RBF implementation files for the AMHEC;

* Validate the system’s performance in software and Hardware-in-the-loop (HIL) simulations.



1.4 METHODOLOGY SUMMARY

During the research of this dissertation, the methodology was as follow:

* Development of the NNMHE in software;

* Tuning of RBF parameters for the NNMHE;

* Improvement of RBF hardware implementation;

* Solving implementation precision problem and enhance area usage;

* Using MPC with MHE in software;

* Tuning MPC and MHE parameters for better noise robustness;

* Tuning of RBF for approximating the MHEC;

* Improving and solving MHEC issues;

* Tuning two different MPC controllers for each stage of the pendulum motion;
* Training the RBF approximation of both stages of the MHEC;

* Testing other neural networks architectures and an SVM using the NIOTS program from
(Santos et al. 2017).

1.5 CONTRIBUTIONS

In summary, the contributions of the present work are:

1. The implementation of the moving-horizon state estimation scheme in
(Alessandri, Baglietto e Battistelli 2008, Alessandri et al. 2011) using artificial neural
networks and floating-point representation in FPGAs, showing that it is possible to
obtain very small sampling times by employing this strategy using ad-hoc hardware
implementations and leveraging the inherent parallel architecture of this model class;

2. The improvement of the hardware implementation of the radial basis function artificial neural
network detailed in (Ayala et al. 2017) with respect to the use of resources and adaption to
the multiple output case;

3. A publication at an international congress (IFAC 2020) (Brunello et al. 2020) which its
contents were included in this document in Chapter 3;

4. The development of an RBF neural network approximation on a two-step MHEC for the
inverted pendulum case study.



1.6 DISSERTATION PLAN

The remainder of the dissertation is organized thusly. The mathematical and theoretical basis
needed to understand the algorithms, theories, and hardware used are presented in Chapter 2,
togheter with a brief state of art review on the subject. Then, Chapter 3 describes the step-by-step
procedure employed in the development of the RBFMHE with its results and improvements.
In Chapter 4 we show, compare, and discuss the methodology and results of the approximate
moving-horizon estimation and control. Lastly, Chapter 5 ends the dissertation with its conclusions
and perspectives for future works.



2 METHODS

In this chapter, we explain and describe all the theoretical foundations needed to understand
and analyze this dissertation, starting with the MHE formulation, its approximate version, offline
design, applications and main challenges. Followed by the NMPC formulation summary and
its application with some machine-learning-based methods. Next, we explain the RBF ANN
architecture and how we will evaluate its results. Then, an explanation of the choice of hardware
used its structure and current market state. Lastly, we present a simple state of art research done on
embedded MPC and MHE, also its implementations with ANN.

2.1 MOVING-HORIZON STATE ESTIMATION

In the present work we are concerned with the state estimation problem for system of the type
T = [ (T, w) + &, (2.1a)

yr = h(zy) + e, (2.1b)

where t € Z, = {0,1,...} denotes the time sample, 2, € R" describes the continuous state
of the system, u; € R? is the control input and y; € RY is the system measured output. The
quantities {; € R"™ and n, € RY are additive disturbances affecting the system dynamic states
and the measured output, respectively. The former may represent any uncertainty in modeling
the system equations and the later eventual disturbances affecting the measurements. Functions
f:R"xR? - R"” and h : R® — RY are in general nonlinear. We employ the moving-
horizon state estimation algorithm as described in (Alessandri, Baglietto e Battistelli 2008). The
moving-horizon approach for state estimation, also termed receding-horizon, comprehend a set
of estimation algorithms in which the most distinctive feature is the use of a sliding window
containing a set of most recent measurements. This is in contrast with the Kalman filter-based
solutions, which solely use the most recent measurement and a state estimation propagation from
one time instant to the next.

The filter in (Alessandri, Baglietto e Battistelli 2008) has asymptotic convergence guarantees,
given mainly that the system is state observable according to an ad-hoc definition for the case of
moving-horizon state estimation. Briefly speaking, the moving-horizon estimation paradigm uses
the most recent amount of information available and it is assumed that a nonlinear state-space
model is available. As the estimation problem is termed as an optimization problem to be solved
online once new measurements become available, it is possible to explicitly take into account the
constraints of the system variables.



Consider the cost function J given by

t

J=pll@eng = 2w 1P+ Y [y —h@) |, (2.2)

i=t—N

where N + 1 is the size of the window considered for calculating J, Z; is the state prediction at
time ¢, and z; , is the state estimation of the state at time ¢ made at time ¢, with N —¢ <7 <. The
variable p is used to weight the confidence we have about the measurements with respect to an
initial estimate of the state z, provided by the user. When the cost function J is minimized having
Z;—n+ as the decision variable, that is called the state estimation function

TNt = a(Ti—n, I;) = argmin J, 2.3

s.t. Ty € €,
where € denotes the closed set of admissible state estimates, and I; = [y, . - -, Yoy Ut Ny - - - 5 Ug)
is the information vector with all the information within a sliding window of the output and input
vectors; we may obtain a state estimate at the beginning of the moving-horizon window. Note that
for sake of simplicity, when solving Eq. (2.3) we focus on obtaining the state estimate at ¢t — IV,
that is, at the beginning of the moving-horizon window. Great simplification is achieved in this
process by obtaining the rest of the state estimates within the window by recursively iterating the
dynamic state equation as

Tiv1t = f (Tigswi) - (2.4)

Summing up, as the Figure 2.1 shows, the moving-horizon state estimation algorithm adds up
to solving Eq. (2.3) to obtain the state estimate at the beginning of the window, presented as a
red dot. While the rest of the state estimates in this window and time are obtained by the iterative
application of Eq. (2.4). Note that the bounds in the state estimates are taken into account naturally
in this process. Lastly, Figure 2.2 presents the program flow chart of a typical MH estimation
algorithm.

2.1.1 Approximate moving-horizon estimator

So that it is explicitly checked for a potential error in the minimization of equation 2.2, we
define that, given a generic pair (7;_y, I;), the associated value with the exact minimization is
given in Equation 2.5. Employing this definition the algorithm £ can then be stated.

Jo(ft—N,t, It) = mmit_N,tJ(ff?t—Mt, TN, [t)- (2.5)
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Figure 2.1: Moving-horizon estimation principle.

2.1.1.1  Algorithm E*

Given an a-priori prediction Zf and a positive scalar e, at any time ¢, find an estimate i:;m such
that 7;  , € () and the prediction is propagated as:

J(‘fjg—Nﬂf?fg—Na L) = J°(Ti_n, 1) < ¢, (2.6a)

Ty np1 = (- np ue-N)- (2.6b)

This algorithm calculates, at each instant 7, a smoothed estimate z;  , of the state at time 7-N.
But, in most feedback control applications, it is preferred to have the current state estimation at
time ¢. This estimation is obtainable via the noise-free dynamics simulation, as done in Equation
2.4. However, this method may incur an erratic behavior of the estimate for high values of N. This
issue is circumvented with many different approaches for online estimation, some of these are
discussed in (Raff et al. 2005) and (Scala, Bitmead e James 1995). Though, as the focus of this
dissertation is not on the online application it will not be further detailed here.
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Figure 2.2: Moving-horizon estimation algorithm.

2.1.1.2 Offline design

In (Alessandri et al. 2011) an offline design of an approximate MHE was also developed for the
solution of the minimization involved in the algorithm £ that is based on non-linear approximators.
The method consists of constraining the Equation 2.3 to take a fixed form as:

a(I,w),t = N,N+1,... (2.7a)

I, = col(Ty_n, L), (2.7b)

where w is a parameter vector to be optimized offline in order to ensure that Equation 2.6
is always fulfilled. After w is determined, the approximate estimation function a(I;,w) can
be employed online to obtain the state estimates with low computational effort. The focus
in (Alessandri et al. 2011) was on approximating using a one hidden-layer feedforward neural
network, in this work however we utilize the similar radial basis function artificial neural network.
Many other choices are possible among fixed-structure non-linear approximators that benefit
from density properties, some of these can be found in (Hornik, Stinchcombe e White 1989),
(Leshno et al. 1993) and (Zoppoli, Sanguineti e Parisini 2002).

The inputs of the NN are the components of the moving-horizon prediction window 7;_
and the information vector ;. And, the outputs ii{) ~.¢ correspond to the jy, state estimate in the
beginning of the window. This means that the output vector has the form on Equation 2.8
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v

iy, = a9 (Iw) =" gl I + we,) + coj. (2.8)
p=1

where v is the number of neurons, g(.) is the activation function of the neuron, and the coefficients

c and w are the components of the vector w. In the RBF neural network case, it can be linked to

the centers and weights to be determined. It is also fundamental to note that the v is sufficient to

characterize the complexity of the network since the number of free parameters grows linearly

with it.

w = col(cyj, Cojy Wpy Wop; P = 1,2, . v55 = 1,2, ...,n). (2.9)

Regrettably, employing a non-linear approximator cannot assure that the results will be within
the system boundaries and defined constraints. This can be done by projecting its output to the
desired set, the composition of the neural approximator and the projection operator is called neural
state estimation function. However, applying the projection requires the solution of a minimization
problem. To simplify the implementation this work applies only the incomplete version without
the projection.

2.1.2 Applications

Due to the popularity of digital processing technologies, the MHE has been
broadly utilized in practical applications. One of the most important applications
of state estimation is fault detection and isolation for a dynamic system. Such as,
robust fault detection (Tyler, Asano e Morari 2000), optimal dosing in chemotherapy
(Chen, Kirkby e Jena 2012), estimation of states of a nanopositioner (Poldni et al. 2013)
and a real-time fault-tolerant air data estimation scheme (Wan e Keviczky 2019).
Other examples are, attitude estimation for navigation systems be it for spacecraft
((Huang, Zhao e Zhang 2017),(Qin e Chen 2013),(Vandersteen et al. 2013)), mobile robots
(Liu et al. 2017) or humanoid ones (Bae e Oh 2017). It was also used in state of charge estimation
technology for lithium batteries ((Shen et al. 2016),(Shen et al. 2019),(Hu, Cao e Egardt 2018)).

Another common application is parameter estimation (Kwon et al. 2015). From towed cables
systems (Sun et al. 2015) to active cantilever beams (Abdollahpouri, Takacs e Rohal-TIkiv 2017)
and enhancing robustness and decreasing sensibility of power systems (Chen 2017). It also
has been employed combined with some sort of control, some examples are with the model
predictive control for water level control (Segovia et al. 2019) and for blood glucose regulation
(Copp, Gondhalekar e Hespanha 2018), in (Andersson e Thiringer 2018) it was combined with a
motion sensor-less controller for an interior permanent magnet synchronous machine (IPMSM).

11



2.1.3 Main challenges

As (Zou et al. 2020), the most recent (up-to-date) overview paper on MHE, describes, there are
three main challenging issues with respect to research topics on MH estimation. These problems
are: how to design an optimization algorithm with good adaptability, design of the arrival cost for
complex systems, and the performance analysis of the estimation. The first is the issue of designing
the optimization algorithm to reduce the computational complexity while ensuring estimation
performance. The second refers to the design of the MH estimator, it is of critical importance for
the estimation scheme. It should be designed according to the system structure and parameter
nature, the design of the MHE is also much more difficult compared to traditional estimators.
Lastly, the parameter design of the MHE is always implemented based on the performance analysis,
one of the most investigated issues in this is the stability and convergence properties. However,
as the MHE is not written in an analytical form it leads to a difficult problem on deriving the
estimation error dynamics.

2.2 MODEL PREDICTIVE CONTROL (MPC)

In this dissertation we are concerned with the utilization of the non-linear MPC employing a
general representation of discrete time prediction model as the one presented in (Ayala et al. 2016),

w(k+1) = f(x(k), u(k)), y(k) = h(x(k)), (2.10)

where z(k) € R” is the n-th state vector in the instant k£ € N, u(k) € R™ is the input vector of
size m and y(k) € R™ is the output vector of size n,. Moreover, the f : R” x R™~E" function is
the one that determines the vector state value on instant k£ + 1, while h is the output state vector
mapping function.

Now it is needed to determine the size of the prediction (/V) and control (/N.) horizons. They
define how many instants ahead will be predicted and controlled, respectively, by the MPC.
These sizes affect the controller’s capability to anticipate future events and optimize its control
actions, however, it proportionally increases the computational cost making it slower and harder to
implement in real-time applications. As such, it is usually employed a smallest horizon size that is
capable of stabilizing the system within the desired control parameters.

With the prediction horizon, the current system state x(k) and a set of input vectors @ (k) in
Equation 2.11a, the one-step ahead prediction model presented in Equation 2.10 can be applied in
an iterative manner to estimate the value of the future states (Z(k)) and future outputs (3(k)).

a(k) = [uw(k),u(k +1),...,u(k + N —1)] € RN™, (2.11a)
(k) =[z(k+1),..,z(k+ N) € RV (2.11b)
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g(k) = [y(k + 1), ...,y(k + N)] € R¥". (2.11c)

It must also be noted the constant /N, which defines the control window, this value must be less
or equal to the prediction horizon (N, < N). This means that the number of degrees of freedom to
determine the sequence of control actions is limited to N, and, if N. < N, then the last value of
the control signal in u(N.) is repeated for the rest of the horizon. Like the MHE, the MPC also
allows a systematic inclusion of restrictions in its control law and controller design, this makes the
controller safer, more predictable, and, by definition, that it will not pass its defined boundaries.

With Equations 2.11 it is then necessary to establish objective criteria for the controller perfor-
mance, so that it can choose the optimal solution u°"* to be used. Therefore defining a cost function
from a linear combination of these criteria to generate a scalar value to be minimized. The typically
used criteria, including stability considerations from (Mayne et al. 2000) and (Rossiter 2013), are
the position error (e(k) = §(k) — yref(k)), the input deviation (4(k) = u(k) — uss and the input
variation rate (Au = u(k) — u(k — 1). The first considers an estimate output vector in relation
to a reference vector (y,.s(k)), while the second presents the difference between the current
input and the one needed to keep the system stabilized in the steady-state (u;), the third being
self-explanatory.

Equation 2.12 describes a possible cost function where a weighted sum of the squared indicators
is used to obtain a convex function, which facilitates the calculation of a global minimum value.
Where () and R are diagonal weight matrices to influence the output.

N
J(( éz ||Q+Z | u(k ||R (2.12)

However, this cost function does not guarantee the system stability (Mayne et al. 2000). As
such, one alternative is employing an additional term called ferminal cost. 1t refers to a pondering
specific to the state at the end of the prediction horizon (z(k + N)). In such case the cost function
equation can be rewritten as Equation 2.13, where () is another diagonal weight matrix and
is the state value in its steady-state. From the minimization of this cost function, we can then
determine the optimum output vector u°* to be used in the system described in Equation 2.14.

N.—1

J(( ZII6 HQ+Z lu(k) 7 + | 2(N) = zss [l - (2.13)

u = ming, ,, v J(@(k),u(k, k+ N —1)). (2.14)

A graphical representation of the MPC method can be observed in Figure 2.3. The red curve is
the reference trajectory that the controller wants to follow, the yellow and dark blue curves refer to
the measured output and the past control input respectively. While the purple and the light blue
curves are the predicted future outputs and control signal. it also illustrates that when the control
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Figure 2.3: Model predictive control principle.

horizon is smaller than the prediction horizon the last predicted control input is maintained for the
rest of the prediction horizon.

With this we can now define the steps of a general MPC as:

1. Measure or estimate the states x(k) of the system;
2. Compute the optimal vector u°?* from the minimization of cost function J;
3. Use u(k) = u®" as the first term of the control sequence and apply it on the system;

4. Go to the next iteration (k = k + 1) and restart from step 1.

Lastly, to emulate the system in order to obtain its states it is necessary to solve non-linear
differential equations. To do this we employ one of the most common numerical methods, the
Runge-Kutta method that discretizes the continuous solution in function of the sampling time.
Starting from a known initial value and the sampling time At it is possible to calculate an
approximate estimative of the next state. To obtain better estimates it is possible to utilize higher
orders, but in this dessertation, we are employing the 4;;, order Runge-Kutta shown in Equation
2.15.
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2o = f(u(k),z(k) + 0,5At.z),
z3 = f(u(k),z(k) +0,5At.2), (2.15)
2y = f(u(k), x(k) + At.z3),

z(k+1) =x(k) + At.(21 + 229 + 225 + 24) /6.

2.2.1 Machine learning based methods

One of the more promising approaches to implementing the MPC with high sampling frequen-
cies (over 100Hz or even over 1kHz) is the machine learning-based methods, be it with artificial
neural networks (ANNs) or support vector machines (SVMs).

Some of the first relevant papers on this area were made by Camacho and Ortega
((Ortega e Camacho 1996), (Gomez-Ortega e Camacho 1994)), approximating an NMPC used
on trajectory control of a mobile robot with a multi-layer perceptron network, in this
case, the whole network was trained offline. Two feedforwards ANN were developed in
(Akesson e Toivonen 2006) to approximate two different control systems, one of pH and the
other of a liquid mixer, but as these systems are slow the sampling time is in seconds. Both of these
works utilized the ANN to approximate the whole behavior of the NMPC, the following works
of Kittisupakorn and Lawrynczuk try to approximate only the non-linear system prediction. In
(Kittisupakorn et al. 2009) the ANN does the first state prediction and then the rest is derived by the
iterative method. Expanding upon this method, ((Lawrynczuk 01 Jun. 2009),(Lawrynczuk 2011)
and (Lawrynczuk 2009)) employs structured ANN models to avoid the accumulation of error by
the iterative method.

The possibility of using RNAs to represent the behavior of non-linear systems is corrobo-
rated by research that demonstrates feedforward neural networks as universal approximators
(Hornik, Stinchcombe e White 1989) and (Park e Sandberg 1991) . In (Lawrynczuk 2009), it
presents a survey on the use of RNAs applied to MPC and highlights that among the most
used architectures are the Multi-Layer Perceptron (MLP) and the Radial Basis Function (RBF),
the latter being the one used in this dissertation.

2.3 RADIAL BASIS FUNCTION ARTIFICIAL NEURAL NETWORKS

The radial basis functions artificial neural network may be represented as
A=F[r] =W ®(r,C,o0), (2.16)

where A € R and r € R™ are respectively the i-th network predicted output and the input vector,
C € RM™ and 0 € RM are respectively the centers and the widths of the radial basis functions
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artificial neural network, M € N7 is the number of neurons in the hidden layer, and the output
weights are given by W € RPM ., The outputs of the hidden layer are given by

o(r,Ct, 0"
O(r,C, o) = : , (2.17)

¢(r,CM, o)
where ¢(r,C™,0™) is the output of the hidden layer for each m-th neuron'. The Gaussian
activation function is more frequently used in the case of radial basis functions artificial neural

networks. They may be calculated as

m _m H?” — CmHQ
o(r,C™, 0™) = exp {—W (2.18)
The squared vector norm calculation may be summarized as
m _m 1 S ) m,i\2
gb(?",c , 0 ) = exp [—W ;(T - C ) s (219)

which is more conveniently used for calculation in hardware as will be seen next.

The radial basis function artificial neural network can be employed for state estimation accord-
ing to the approximate strategy devised previously. We look for constructing a nonlinear mapping
F : X x71 — X which can be constructed by employing an artificial neural network to fit a
dataset constructed offline by solving (2.3) in a simulation environment, where Z, X’ represent
respectively the function domains for the information vector and the state estimate. Being so, the
artificial neural network will deliver a state estimate readily once the information vector and the
state prediction are updated. Thus if we set

Ti—Nit

2.20
L] (2.20)

A\t = T, Tt =

and build a dataset to train the artificial neural network using simulation data and the results of the
moving-horizon which is rich enough to represent the system dynamics, it is possible to construct a
proxy for the optimal moving-horizon estimator using an artificial neural network. In the following
section, we devise hardware architectures to implement the radial basis functions artificial neural
network as in (2.16).

2.3.0.1 Approximation Residual Evaluation

It is possible to compare \; and ) to evaluate the approximation capability of the artificial
neural network. If we define the residual measure as e = \! — \i, we can calculate the multiple

'We denote by A* the vector composed by the k-th line of a matrix A. Similarly, the k-th component of a vector v is given by

o
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correlation coefficient for each i-th output as (Schaible, Xie e Lee 1997)

N 12
2,i D i e
R =1-— Ntli —7 (2.21)
Zt:l [)‘t —A }
where N is the total number of samples and the upper bar denotes the mean of a sequence. The
closer RR? is to 1, the better is the approximation capability of the artificial neural network. It is con-

venient to use this measure as it allows the comparison of outputs of different units and magnitudes,
as we will evaluate the approximate estimation of translation/angular positions/velocities.

2.4 REPROGRAMMABLE SYSTEM ON CHIP

With a focus on the application of the MHE in embedded systems, it is necessary to explore
the appropriate architectures that meet the requirements of real-time execution and low energy
consumption. In this sense, the architecture of the computational system has a great influence
on its performance. The most common architectures are general-purpose processors (GPPs),
Digital Signal Processors (DSPs), Graphics Processing Units (GPUs), and architectures dedicated,
being implemented in reconfigurable devices such as FPGAs (FieldProgrammable Gate Arrays)
or manufactured in silicon, as is the case of an Application Specific Integrated Circuit (ASIC)
that is a dedicated circuit for a specific purpose, a System-on-chip (SoC) that includes a proces-
sor or a System-on-chip Multiprocessor (MPSoCs) that includes multiple processors (usually
heterogeneous) (Gajski et al. 2009).

General-purpose processors, whether embedded or not, are based on the von Neumann model
(Burks, Goldstine e Neumann 1982) which defines an architecture where instructions and data are
stored in memory and interconnected to a processing unit via a bus. This architecture widely used
in the industry has limitations, the main two being called the Memory (Wulf e McKee 1995) and
Power Walls (Hartenstein). The first derives from the fact that the central processing unit (CPU)
has a higher frequency than the memories it uses, limiting its processing performance. The latter
advents from the increase in the number of transistors together with an increase in frequency, then
reaching a power consumption and heat dissipation limit. Coming to the adoption of multiple
processing units, commonly known as multi-core. But, this is not always practical or beneficial as
many algorithms are not easily parallelized and many of those have limitations in architectures.

In a comparable form, the GPUs have been becoming more popular and increasing their market,
with their highly parallel processing unit architectures. Its downsides are that it is not suited
to sequential algorithms and has an even higher energy consumption than CPUs. A possible
alternative to overcome these limitations is the production of specific architectures that directly
implements the algorithms in hardware. This enables the possibility to adjust between dedicated
processing units for sequential and parallel applications. This middle-ground is where FPGAs
provide adaptable architecture with fast prototyping and low energy expenditure when compared to
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high-frequency embedded CPUs and GPUs. This flexibility can be utilized both as an end-product
or as a way of validating a project to be done on a dedicated chip. These qualities are the reason
for its adoption in this project.

2.4.1 Field Programmable Gate Arrays

A Field-Programmable Gate Arrays, more known as FPGA, is a chip consisting of an array
of configurable logic blocks (CLB). Different from an Application Specific Integrated Circuit
(ASIC), which, as its name says, can perform only a unique function for the lifetime of the chip, an
FPGA can be reprogrammed as needed to serve various functions in little to no time. The potential
to be reprogrammed of FPGAs are at the same time, a blessing and a curse, as it offers high
flexibility in use, but vastly increases the difficulty of programming it when compared to software.
Since early 2000 FPGAs have begun to contain enough resources (logic cells/IO) to make the
High-Performance Computing (HPC) community interested (Wain et al. 2006). But despite these
disadvantages, FPGAs are a compelling option for digital system implementation due to their less
time to market and low volume cost (Farooq, Marrakchi e Mehrez 2012).

Normally FPGAs comprise of:
* Programmable logic blocks which implement logic functions.
* Programmable routing that connects these logic functions.

* I/O blocks that are connected to logic blocks through routing interconnect and
that make off-chip connections.

A generalized example of an FPGA is shown in Fig. 2.4 where configurable
logic blocks (CLBs) are arranged in a two-dimensional grid and are interconnected
by programmable routing resources. I/O blocks are arranged at the periphery of
the grid and are also connected to the programmable routing interconnect. The
“programmable/reconfigurable” term in FPGAs indicates their ability to implement
a new function on the chip after its fabrication is complete. The reconfigurabili-
ty/programmability of an FPGA is based on an underlying programming technology,
which can cause a change in behavior of a pre-fabricated chip after its fabrication
(Farooq, Marrakchi e Mehrez 2012).

There are multiple discrepancies between traditional software and hardware design flow for
FPGAs. Subsequently, to the design and implementation of a hardware design, there is a multistep
process that needs to be done before it can be used in the hardware. Step 1 is Synthesis, which
translates HDL code into a textual description of a circuit diagram or schematic named netlist.
Step 2 is using register-transfer level simulation to verify that the design described in the netlist
functions accordingly. Thereafter, the netlist is translated into a binary format (Translate), the
components and connections that it defines are mapped to CLBs (Map), and the design is arranged
and routed to fit onto the FPGA (Place and Route). Another simulation is then executed to establish
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Figure 2.4: Overview of an FPGA architecture (Farooq, Marrakchi e Mehrez 2012)

how the design has been arranged and routed. Lastly, a file is created to load the design on the
hardware. This file is a configuration file used to program all the resources in the FPGA. Utilizing
tools, such as Xilinx Chipscope, it is possible to analyze and debug the design while it is running
on the hardware. The software design flow has no such requirements for the pre-implementation
simulation step (Wain et al. 2006).

Compile times for software are much shorter than implementation times for hardware
designs so it is practical to recompile code and perform debugging as an iterative pro-
cess. In hardware, it is very important to establish that a design is functionally correct
before implementation as a broken design could take a day or more to place and route
and could potentially cause damage to system components. Figures 2.5b and 2.5a illus-
trate the differences between software and hardware design flows (Wain et al. 2006).

The use of FPGAs in real-time applications already have a formal verifi-
cation in (Jabeen, Srinivasan e Shuja 2017) and are wused for industrial processes
(Ibaez, Ocampo-Martinez e Gonzalez 2017), predictive control (Iplikci e Bahtiyar 2016),
aircraft control (Hartley et al. 2013), and even some metaheuristics implementation on control
(Xu et al. 2015) and robotics (Huang 2012). Lastly, we quote (Sampaio 2018) on the current state
of the FPGA market and techonology:

In terms of the configuration of processors embedded internally in the FPGA,
we can see examples from the two largest manufacturers, Altera and Xilinx. Altera
offers in its FPGAs the possibility of configuring the Nios II processor which is a
Soft Core Processor or softcore (the reconfigurable processor that uses the logical
elements of the FPGA) and Xilinx offers the Soft Processor MicroBlaze. Hardcore
processors (SoC) like ARM are also available in the Cyclone V family from Intel
/ Altera (Cyclone V Device Handbook - Intel) and in the Zynq family from Xilinx
(Zyng-7000 SoC Data Sheet: Overview), which makes co-design solutions more effi-
cient (Noguera e Badia 2002).
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Although FPGAs have historically offered a limited number of logic cells, low
frequency, and higher power consumption compared to dedicated hardware solutions
(ASIC), recent releases from both manufacturers using fabrication with 16 and 14 nm
transistors provide solutions with a high number of logic cells, in the millions and high
frequencies, in the 1 GHz band. Two practical examples are the FPGAs of the Virtex-7
family from Xilinx (Virtex-7 FPGAs 2012) with up to 2,000,000 logic elements and
the Intel / Altera (Kenny e Watt 2016) Stratix 10 family FPGA with up to 5,510,000
logic elements. Both of these features combined with manufacturing technologies
are capable of providing a reduction in energy consumption of up to 70% compared
to previous devices. These features make these devices increasingly attractive for
large-scale use.

2.5 STATE OF THE ART

In this section, we present a simple bibliographic study done to illustrate the relevance and
innovation factors of this work. We intend to do this with the help of the data collected from the
Web of Science (WoS) Core Collection and shown here in Tables 2.1 and 2.2. Table 2.1 refers
to the number of related papers by topic, the intersections are related to the number found when
searching utilizing both topics with the AND logic connector. While Table 2.2 exhibits the number
of the related papers found by search topic in a number of years. Although most search topics
are self-explanatory, the topic here referred to as Embedded actually represents the results of a
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group of search topics, these are embedded, microcontrollers, GPUs, FPGAs. All these topics
together are collectively referred to as embedding, as such the results found in the FPGA column
are a subset of it.

Initially, we can observe in Table 2.1 that the MHE has much fewer total related papers
than both its dual, the MPC, and its primary competitor, the Kalman filter, showing its smaller
popularity and use. One important thing to point out is that while this data gives an overview of
the popularity of each topic, it is not completely accurate. As the related articles found in the
intersections M H Ex RBF and M H Ex N Nembedded do not in fact related to the moving-horizon
estimator, but actually are about moving-horizon neural network methods (Dewasme 2019) and
(Fernando et al. 2019). On the other hand, the paper found by the intersection M H Ex FFPG A is
indeed about an FPGA implementation of an alternating direction method of multipliers (ADMM)
which solves QP problems arising from Moving Horizon Estimation (Dang e Ling 2014). The
intersection M H Ex N N mainly refers to works where both were employed together, not using
the neural-network to approximate the MHE behavior as done in this dissertation.

The other main point of Table 2.1 is to show that there are still few papers that approach both
the MPC and the MHE together, while the KF is much more used as it is simpler and easier
to use. The combination of MPC, MHE, and NN brings only two results, the first being the
(Alessandri et al. 2011) paper much-cited and discussed here in this dissertation, and the other
is (Kamesh e Rani 2017) which discuss, in fact, an MPC formulation based on EKF employing
an adaptive ANN model for supervisory control and is illustrated for setpoint tracking of reactor
temperature of an industrial multiproduct semi-batch polymerization reactor challenge problem.

However, the combination of MPC, MHE, and embedded systems, brings about 9 dif-
ferent results, from which 3, (Seenivasan, Olivares e Staffetti 2020),(Englert et al. 2019) and
(Frey et al. 2019) does not have relation to MHE and is only about embedded MPC. Another
one is a solver for constrained trajectory optimization based on a sequential operator splitting
framework and is potentially suitable for nonlinear model predictive control and moving hori-
zon state estimation in embedded systems (Sindhwani, Roelofs e Kalakrishnan 2017). The rest
combine MPC, MHE and an embedded implementation, varying from uses in induction mo-
tors (Frick et al. 2012), delivery drones (Mehndiratta e Kayacan 2019), communication delays
and losses (Zeng e Liu 2015), fault identification (Peng et al. 2015) and lastly, an overview of its
opportunities and challenges (Findeisen, Graichen e Monnigmann 2018).

If Table 2.1 confirms this dissertation novelty factor, by displaying that its intended results
have very little to no existing similar papers results. Then, Table 2.2 serves to endorse these topics’
relevance, as research continues to increase and grow, especially in the last decade.

21



Table 2.1: Number of related papers by topic from Web of Science

Search Topic Total RBF | Approximation | Embedded NN NN embedded | FPGA
MHE 1088 1 154 91 142 1 1
MPC 58076 296 1394 991 3817 88 229

NN 425373 | 12347 13134 15729 425373 15729 2868
FPGA 52238 64 687 6859 2863 2863 52238
RBF 25527 | 25527 4363 559 12347 559 64
MPC with MHE 247 0 14 9 2 0 0
Kalman Filter 56642 262 2064 1490 2906 90 242
KF MPC 1054 6 39 20 102 2 1
Table 2.2: Number of related papers by topic and year according to Web of Science
Topic\Publication Year | Until 2000 | 2000-2005 | 2006-2010 | 2011-2015 | 2016-2020
MHE 45 158 350 465
MPC 2941 4767 8005 14880 27389
NN 43199 47002 62157 76358 195452
FPGA 1550 5674 11569 15560 17840
RBF 2071 3472 5097 6215 6996
MPCMHE 13 33 80 121
MHE FPGA 0 0 1 0
MPC FPGA 3 21 72 133
MPCMHE FPGA 0 0 0 0
Kalman Filter 5028 5656 9928 14858 21015
KF MPC 59 98 153 272 467

2.6 CHAPTER FINAL CONSIDERATIONS

All of the methods, architectures and hardware that will be employed in this dissertation have
been explained in this chapter, along with their combined relevance and state of art. The next
chapter is one amalgamation of most of these theories put in practice, approximating the MHE
with an RBF ANN and embedding it on an FPGA.
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3 EFFICIENT HARDWARE IMPLEMENTATION OF
NONLINEAR MOVING-HORIZON STATE ESTIMATION
WITH ARTIFICIAL NEURAL NETWORKS

This chapter discloses the RBFMHE implementation, mainly the same content as the published
paper (Brunello et al. 2020), and some improvements and corrections made after its publication.
The first section describes its design and the methodology employed in its development in a
broad manner, while the second section shows its results, the case study used and specifies some
parameters and experiments from the first section.

3.1 DESIGN OF APPROXIMATE MOVING-HORIZON STATE ESTIMATION

The optimization problem in Eq. (2.3) may be performed to obtain the state estimates within
a sliding window. Being so, it is necessary to solve at each sampling instant an optimization
problem, which in many cases may be impractical or demand significant computational resources.
In (Alessandri, Baglietto e Battistelli 2008) the authors propose also an approximate version of
the algorithm described in Egs. (2.3) and (2.4), which was further analyzed for the case of artificial
neural networks in (Alessandri et al. 2011).

The method for obtaining an approximate version of the moving-horizon estimation algorithm
as given in Section2.1 can be obtained if the mapping from the state prediction and information
vector, which is performed offline solving an optimization problem, is done by any function
approximation regression model. In other words, we want to construct an approximate nonlinear
mapping for the mathematical operation performed in the optimization in Eq. (2.3), which will be
much less computationally intensive and indicated for an embedded computation platform. This
can be achieved by obtaining the state estimates offline and constructing a nonlinear mapping
offline. For details see (Alessandri, Baglietto e Battistelli 2008, Alessandri et al. 2011).

To perform the nonlinear mapping from observations to state estimates, we may employ any

Inputs

MHE optimization Mapping i | Artificial Neural .| Embedded Parallel
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Information

vector

Figure 3.1: Design of the embedded approximate MHE using NN.
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nonlinear approximation function for regression as we have many examples from machine learning.
One of the cases is the artificial neural network, which is particularly interesting in real-time
applications due to its inherent parallel architecture. To best take advantage of this parallel
architecture, we decided to embed it on reconfigurable hardware, in this case, an FPGA. Figure 3.1
shows a simplified overview of the whole theoretical design of the embedded approximate MHE
using neural networks.

3.1.1 Software implementation

Using what was previously explained as the analytical basis we now try to describe the
procedures done to make its software implementation.

At first, we sketch how each macro part of the design will communicate with each other,
defining the dataflow presented in Fig.3.2. In this image, it discloses that the model system will be
approximated via a 4th order Runge-Kutta. It is fed by the system’s current states and its control
input is substituted by a sinusoidal input with varying amplitude. The system simulation is done
in a whole, single batch, then deliver all the inputs, outputs, and states to the next phase. The
system that is used in this dissertation as a case study is the inverted pendulum and is detailed in
Subsection ??. Its outputs are the linear and angular positions in centimeters and radians, combined
with a random white noise which means are 0,05 and 0,1 respectively.

In the optimal moving-horizon estimation stage we now do a one-step at a time simulation
traversing the data batch initiating when there is an information window one size larger than the
moving-horizon defined. To solve the optimization problem at each iteration we use Matlab’s
Isgnonlin function, it is a nonlinear least-squares problems solver also accepting the use of lower
and upper boundaries for its solution, one of MHE’s better points over other estimation methods.
The cost function used is the one represented in Eq.2.2 and the constant pz was 0,01 denoting
that it does not have confidence in the initial estimate provided by the user. The solution of the
optimization problem brings the 2,y of the present MHE window, we then can finally use the
same method in Eq.2.4 to obtain the rest of the estimates until the current moment.
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When the MHE is finalized we carry the information vector and the estimated states to train
the RBF neural network, the former being its input and the latter being its expected output. The
main reason that the real states are not employed in the training is that we are assuming that they
will not be readily available in many practical cases, that being the case we then train it to obtain
the closest results to those of the optimal MHE. To utilize the information vector as the input it is
first needed to format it in a configuration where each column has the current and the window with
the horizon information. To do so means that the number of inputs in the NN will be the same as
Eq.2.20. That is immediately followed by a normalization of all data, each one by its maximum
presented value, this is done so that the neural network does not have to deal with multiple types
of range of numbers, making it have weights values closer to each other.

After the normalization, it starts the training by finding the RBF’s centers using Matlab’s
kmeans function, which uses the k-means clustering algorithm and the squared Euclidean distances
as default to find the locations of the centroids of the provided data. This program receives the NN
input and the number of neurons the network will have, this number is the same as the numbers
of centroids the program must find. Next, it uses the centers, inputs and the o to calculate the
radial basis function ¢ previously determined in Eq.2.19 using a 2,,; order Taylor polynomial. This
function can be exchanged with any other type of radial basis function best fitted to each type of
problem. Lastly, it operates with the ¢ and the expected output to retrieve the weights, finalizing
the training and securing all information needed to employ the RBF neural network. To apply the
trained NN in a system loop or iteration it simply needs to insert the current input data on the RBF
to obtain the current phs and multiply it by the weights to achieve the current output estimate, in
this work, it is the state’s estimation.

N Nippurs = horizon * (inputsypp + outputSype).- 3.1

As we already have the NN and know how to use it, now we need a form of evaluating its
results. In Fig.3.3 it can be observed a brief step-by-step of all the main points in the RBFMHE
implementation. In it is also presented how we decided to assess the results is using the R-squared
residual evaluation shown in Eq.2.21, we also determine that the NN must obtain an R-squared
result of approximately 0,95 in each of the estimates for it to be considered a good enough
approximation of the optimal MHE. The means-squared error is also calculated, however it is not
used as a fixed threshold that needs to be achieved. If the R-squared does not pass the test, then we
return to the phase of defining the parameters of the RBF neural network. To better analyze the
results of the network and expand the range of possible choices, it was initially made more than
150000 combinations of the number of neurons, o, and random seed to observe how the network
reacted at each of the parameters. The parameters were varied from 1 to 30, 1 to 1000, and 1 to 5
respectively. The greater variation of the sigma parameter derives from the fact that it is the only
parameter that we can control in reality without it affecting too much the energy consumption and
the area cost on the embedded hardware. We then take all the R-squared data and put it into a
table for each random seed, where each cell of the table is the lowest scoring R2 between the four
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Figure 3.3: Step-by-step of the RBFMHE implementation.

states estimated. Finally, we find in these tables the lowest number of neurons needed to pass the
R-squared threshold and the other parameters with it, this is the chosen RBF network to later be
implemented.

With this, we then need to adapt the hardware architecture observed in (Ayala et al. 2017) to
accept multiple outputs. To do so it was necessary to change the output design to a more modular
one, where it could be easily increased or decreased the number of desired outputs. Then, it is
firstly tested in the ModelSim software to verify if its results coincide with the expected. It is in
this step that was encountered a problem forced the use of 64 bits representation instead of the
initially desired 32 or less. This problem was solved and is unraveled in subsection 3.1.3 with
more details. After the architecture was functioning on the ModelSim we embed it on an FPGA
and confirm the results with a hardware-in-the-loop (HIL) trial. We then conclude the experiment
by comparing the results with the expected ones and evaluating its synthesis and timing results.

In the next subsection, we describe its hardware implementation which may be leveraged to
implement the state estimation algorithm on hardware.

3.1.2 Hardware Architectures for Radial Basis Function Artificial Neural Network

The hardware architecture of the radial basis function artificial neural network is implemented
in Very High Speed Integrated Circuit Hardware Description Language (VHDL) using parallel
modules for both the hidden layer neurons as well as the output layer neurons. All modules use
Finite State Machines (FSMs) as their controllers for data processing synchronization and all
arithmetic operations are done using customizable floating-point libraries for better precision and a
large. These libraries are described in (Muiioz et al. 2009) and (Muiioz et al. 2010) and are based
on the IEEE 754 standard (IEEE 1985). The main floating-point modules used in this work are
the addition/subtraction, multiplication and exponential units called FPadd, FPmul and FPexp,
respectively.

The generalized neural network architecture is presented in Fig. 3.4 which shows the variable
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Figure 3.4: Radial basis function artificial neural network hardware architecture. (Brunello et al. 2020)

inputs (ry : r,), the constant Gaussian centers (c; : ¢,), obtained from the training process, all
as inputs of the hidden layer neurons (N). The hidden layer neurons initiate their computations
in parallel with a start signal and when their output values are done, yield a ready signal which
initiates the output layer (> ) compute process which uses the hidden layer outputs () and
constant weights (w,, ). Finally, the output layer raises a ready_all signal when the output values
are available.

The hidden neuron module described in Fig. 3.5 is responsible for implementing Eq. 2.19 and
uses two FPadd, a FPmul and a FPexp units to implement the logic. The process is controlled by
an FSM using the start and ready signals for the FPadd, FPmul and FPexp units and synchronizes
them using two MUXES with their respective switch signals (sel;, sely) to efficiently minimize
hardware area reusing each FP unit.

The output layer neurons follow a similar architecture each using one FPadd and one FPmul
unit and is represented in Fig. 3.6.

Finally, a hardware description configuration MATLAB script was developed to easily be able
to test multiple configurations of this architecture based on these neural network models. The script
automatically generates the VHDL code for the radial basis function artificial neural network based
on the number of inputs, the number of hidden and output layer neurons, and all constants resulting
from the training process. The script can also generate each floating-point unit with a varying
bit-width representation for a trade-off study of a more precise or a lower resource consumption
architecture.

3.1.3 Precision representation problem

Now we return to the previously presented problem, which is that when using representation
lower than 64-bits the network results were all completely wrong. After a thorough investigation,
it was found that at the ¢ calculation phase all its values were very close to 1, producing numbers
with nines for many decimal places like 0,999995. As it is known the floating-point representation
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has trouble representing this kind of value and in many cases it rounds it up to 1 when doing
arithmetics, losing all the meaning it has in the calculation. This problem was initially found during
the ModelSim simulation, being later replicated in Matlab using the cast32 function which forces
computations to be done using 32 bits representation. In Figure 3.7 we can observe a histogram
showing the value window that the ¢ variable has.

This problem was unfortunately deeply related to the radial basis function used, the estimation
data values, and the o parameter. As we increase o to improve the result of the estimation, more
precision is needed to represent ¢ and its subsequent calculations. The method needed to solve this
conundrum was to change the cost function in a way that solved the precision problem but didn’t
force big alterations to the hardware design. This is achieved by using an ingenious approach,
simply subtracting the radial basis function by 1. It accomplishes all the stated requirements,
solving the precision problem by changing its value from numbers close to 1 to numbers with
many left-side zeroes, which floating-point representation has no difficulty representing with few
bits. The only adjustment needed in the hardware design is that it excludes the first element of the
Taylor series. However, the other process that computes the radial basis function still needed to be
addressed.

3.1.4 CORDIC removal from RBF neuron implementation

After the changes were done to correct the precision problem the design was once again tested
in ModelSim, this time it worked without a problem. This though created more questions, how was
it working when there have not been any changes in the CORDIC module. After inspecting all the
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Figure 3.8: Representation of the inverted pendulum system, which is used as a case study for state estimation in the
present paper.

simulation iterations it was then confirmed that the CORDIC was not utilized a single time. This
happens because the values to be computed in the FP-CORDIC-TAYLOR module are all close to
0, where was shown in (Mufioz et al. 2010) that the CORDIC algorithm has poor performance, the
module then only uses the Taylor series approximation. With this knowledge, it is then possible to
remove the CORDIC completely without lowering the performance and reducing the hardware
area needed for the RBF neural network. Finally, all the tuning, tests, and simulations were remade
with this new architecture.

3.2 RESULTS ON RBFMHE

In the present section, we provide results for the MHSE implementation in FPGA using
approximate solutions described in this dissertation. To this end, we use a simulated case study
and analyze its real-time implementation using an Intel Arria 10 FPGA.

3.2.1 Case Study

In order to test the moving-horizon state estimation algorithm implementation on hardware,
we use an inverted pendulum. See Fig. 3.8 for details. Let p, # be respectively the translation of
the cart and angular position of the pendulum, m, M be each of the concentrated masses, [ and .J
are respectively the length and moment of inertia of the pendulum and F' represents an exogenous
force which is the input of the system. If we set the continuous-time state as z = [p 0 p 0]
and the input as w = F', we can describe the equations of motion in nonlinear continuous-time
state space form as (Astrom e Murray 2008)

p=fzw) =[5 0§ 0] (3.2)
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with the dynamic equations of the transition of the state in continuous time are given by

—mlsgh? + m2gl?sgcy/ J; — cp — mlcwé/Jt
M, — m22¢3 ) J; ’
—mil2sgceb? + Myglsy — clegp — vOM,; /m + legu
Jy (M /m) — ml?c2 ’

folz,w) =
(3.3)

fo(z,w) =

where sg = sin @, cy = cos, M, = m+ M, and J, = .J 4+ ml?. We consider to measure both posi-
tions of the cart and the pendulum, that is, y = [p 9} T. The inverted pendulum and its close vari-
ants have been used in many recent works with respect to control and state estimation (e.g., to cite a
few recent contributions, (Dwivedi, Pandey e Junghare 2017, Messikh, Guechi e Benloucif 2017,
Su et al. 2018), due to its switching stable/unstable regimes. As it is a well-known case study, it is
a good choice for testing new implementations on hardware for state estimation algorithms. It will
also ease the reproduction for the interested reader.

3.2.2 Simulation results

Data is generated using a 4th order Runge-Kutta solver with sampling time of 10 ms, so that
the discrete-time model formulation as in (2.1) can be employed. Simulated data is generated with
a sinusoidal input of 10 rad/s and 50 N amplitude, for 20 seconds in total, and the measurements
are corrupted by a white noise signal, so that the mean is the true measurement and with covariance
matrix as diag(0.05,0.1). The parameters of the physical system used in the simulations are
M =10kg, m = 80 kg, ¢ = 0.1 Ns/m, J = 100 kg.m?/s?>, | = 1 m, v = 0.01 N.m.s, g = 9.8
m/s?, all with proper units.

The optimal moving-horizon state estimator is then run in order to establish the state estimations
as required. After some trial and error, we set NV + 1 = 11 as the moving-horizon length and
1= 0.01. We use this for this example no state prediction and a window containing the 10 most
recent measurements. The size of the window has been set so as to guarantee constrained error as
t — oo. By running the optimal estimator, we were able to generate all the inputs necessary for the
approximate version of the state estimator. The required data to construct the approximate version
are, according to Eq. (2.20), the time history of the information vector and the state estimate at
the beginning of the moving-horizon window, as we are not using the state prediction for sake of
simplicity as the focus in on the comparison of execution time on different heterogeneous platforms
as we will see in the next subsection.

An approximate filter has been obtained for the optimal moving-horizon estimator, using a
radial basis function artificial neural network as in Eq. (2.16). We set the inputs of the network as
the information vector (/;) containing all inputs and outputs within the receding-horizon window.
We trained the network using the data from the optimal estimation procedure using a 2-steps
procedure (Haykin 2009), by selecting the centers using the k-means algorithm, fine-tuning the
spread by testing many different values, and getting the output layer weights with the Penrose-
Moore pseudo-inverse with QR factorization (Moody e Darken 1989).
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The training has been done for a range of 1/02 in [0.1, 100] with a step of 0.1 between two
consecutive values. The impact of the number of neurons on the estimation accuracy was also
evaluated by varying it in the range [1, 30]. As the k-means algorithm depends on random initial
solutions, we tested all these configurations 5 times. Testing 5 times, for the range of 1/02 and the
number of neurons set amounts to 150,000 different artificial neural networks tested.

In Figures 3.9 and 3.10 we see examples where we maintain one of the parameters constant and
manipulate the other evaluating the resulting R-squared, with these we can infer that the angular
velocity state is the more difficult state to estimate. The former shows that the lower the value of
the delta, or the higher the sigma, the better are the results for 6’ the other states presents a similar
pattern however we can observe a limit being reached on p close to 0,95. As this parameter does
not, at first, results in a variation in the area and computational cost we utilize its value with the best
results. Whereas, the latter display that there are inflection points on the curves where increasing
the number of neurons does not significantly improve its results, sometimes even making them
worse. A complete surface of the variation of all parameters and states along with a summarized
version of the chosen tables can be found in the Appendix I Figure I.1 and 1.2.
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Figure 3.9: R-squared of all states by the variation of delta.
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This information is then summarized in Figure 3.11, which depicts the multiple correlation
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coefficient as in (2.21) for the least accurate state (among the four) evaluated for a given number
of neurons in the artificial neural network. It can be seen that there is a point in which augmenting
the number of neurons does not improve significantly the accuracy of the artificial neural network
in estimating the states. As the hardware resource use, energy consumption, and latency are
directly affected by the number of neurons, which represent the computational complexity of the
state estimator, we favor the solution that represents the best compromise between accuracy and
complexity. We then chose the artificial neural networks around the 14 neurons solution, which is
the inflection point of the curve with the greatest R?.

0.8}

0.6

2

0.4}

0.2

O L L
0 10 20 30

Number of neurons

Figure 3.11: Multiple correlation coefficient for the worst state estimate obtained for the radial basis functions
artificial neural networks varying the number of neurons. We can see that there is a point which represents a good
trade-off for accuracy and complexity.

Employing the configuration of 14 neurons, sigma equal 1000 and the random seed 3, we
acquire the data on Figure 3.12 that compares the results of the approximate MHE with the optimal
one. As both results are close to each other Figure 3.13 serves to better display that the MSE of the
approximation is higher than the optimal solution, but still within a reasonable margin. Next, we
will present the results from the FPGA synthesis and the HIL simulation.

3.2.3 FPGA synthesis results

The radial basis function artificial neural network as reported in Subsection 3.1.2 is implemented
using VHDL code. This code was simulated using ModelSim for logic validation synthesized on
Intel® Quartus Prime 17.1 for the FPGA implementation. The target FPGA was an Intel Arria
10 (I0ASO66N3F40E2SG). The mean squared errors (MSE) obtained by the estimation schemes
implemented are summarized by using a modified mean square error metric for the case of state
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Figure 3.12: Comparison between all the real states and its estimates by the RBFMHE at t—t.

4 T T

—+— OMHE it
——— NNMHE tit

Time (s)

Figure 3.13: Comparison between the mean squared error of the optimal MHE and its NN counterpart.

vectors, as

MSEgs (x'El—]N,ﬁ $1[£2—]N,t) =

N
1 R N
t t=N+1
(1] [2]

where N is the total amount of samples and ;" v ;, 2~ y, are two different state estimates at ¢
made at t — N one wishes to compare. Being so, the MSE g presents an overall metric of how well
the estimates at the beginning of the sliding window are made. Minimizing MSE g means that the

difference of xl[tl_] Nt x?_] N are minimized. For example, if we compare the optimal solution with
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the approximate implemented in hardware, minimizing MSE g means improving the accuracy of
the FPGA solution. Table 3.1 summarizes the MSEyg for the cases in the inflection point of the Ry
curve shown in Fig 3.11, namely the solutions around the 14 neurons case. In this table we see
the comparison of estimates made on the FPGA, the artificial neural network run offline, and the
optimal moving-horizon state estimation. From the results presented in the table, we can see that (1)
for a number of neurons greater than 13 the estimates do not present great improvements in terms
of accuracy, what corroborates the information given in Fig 3.11 and (ii) that the implementation
on hardware is accurate when compared to the MATLAB offline solution, as the errror is virtually
zero (please note that the values are given in dB). Thus, we look further for the synthesis results
for number of neurons greater than 13, as we shall analyze in the following, as they present a good
compromise in terms of accuracy, hardware consumption.

Table 3.1: Accuracy of the hardware implementation of the moving-horizon state estimation implemented on

hardware. In the table below, the state estimates of the optimal filter performed offline, the FPGA implementation, and

. . . . . ~0pt ~ A~
artificial neural network implemented on MATLAB are described respectively as 2,"  ,, 257G, and 28NN .

N° of neurons

. 10 11 12 13 14 15 16
Metric

MSEqs (), #175%) 753 1112 982 527 687 818  -9.84
MSEag (@f{’?\,@,g}fﬁﬁﬁ -178.26  -170.36 -167.38 -157.00 -170.90 -183.05 -184.52

Table 3.2 shows the synthesis results including the number of Adaptive Logic Modules (ALMs),
Registers (REGs), dedicated hardware multipliers (Mult.), maximum frequency (Freq.), and the
number of cycles needed to compute each solution. Three architectures with a varying number of
neurons from 14 to 16 were synthesized to illustrate the trade-offs between accuracy and hardware
use. All floating-point operations are synthesized with double precision arithmetic (64 bits) since
lower precision operators incur high computation errors for these radial basis function artificial
neural network configurations.

In Table 3.3 we see the timing results of the approximate moving-horizon state estimator. The
time to process a state estimate of the artificial neural network has been calculated by 7;x no.
of cycles, using information from the last two columns of Table 3.2 (7; is the respective period
in each artificial neural network). It is possible to see that the approximate filter implemented
on FPGAs achieves considerably high-frequency rates, in the order of 500 kHz. The result is
compared to a software solution running on an ARM processor of a Raspberry Pi 3 to showcase
the speed up that can be achieved by the dedicated hardware solution. A speed-up rate higher
than 31 times is achieved. This result is important as it enables the application of such advanced
filtering methods to systems with fast dynamics (Zori¢ et al. 2019) or with complex structure,
(Christofides et al. 2013) on low power embedded systems.
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Table 3.2: FPGA Synthesis Results.

Neurons ALMs REGs | Mult. | Freq. | Cycles
(251.680) (156) | (MHz)
Cyclone V (56.480) (156)
13 45,656 13,548 68 67.5 173
14 47,981 14,509 72 66.2 178
15 50,121 15,470 76 65.6 179
16 54,578 16,435 80 64.1 182

Table 3.3: FPGA Timing Results.

Neurons FPGA (us) ARM (us) Speed up

13 2.56 46.98 18.3 x
14 1.60 50.58 31.6x
15 1.64 54.19 33.0x
16 1.67 57.80 34.6 x

3.2.4 Improved RBFMHE

After improving the approximate MHE changing the cost function to Gauss-1 we redo all
the previous simulations. Figure 3.14 confirms that the software simulation and results are on
par with the ones found previously, while Table 3.4 show that the number of, adaptive logic
modules (ALMs), registers, multipliers used are less than half of that of the previously 64-bit
implementation even if the time taken has remained the same. This decrease of the area made it
possible to embed it on a smaller, simpler, and more compact FPGA which are all improvements

desired to a real-time application.
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Figure 3.14: Comparison between the state results and mean squared error of the optimal MHE and its NN counterpart
with G-1 as cost function and 32-bits representation. State results at t/t.
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Table 3.4: FPGA Synthesis and Timing Results for the improved RBFMHE

Family Device
Cyclone V SCSXFC6D6F31C6
ALMs Mult. | Freq. FPGA
(41.910) REGs (112) | (MHz) Neurons (115) Cycles
19,429 | 6519 18 100 14 1.63 163

3.3 CHAPTER FINAL CONSIDERATIONS

The efficient hardware implementation of nonlinear MHE with ANN presented on the paper
accepted on IFAC 2020 (Brunello et al. 2020) was described in-depth, showing that its FPGA 64-
bits 14 neurons architecture has a speed-up of approximately 30 times that of its ARM counterpart.
This implementation is then further improved by reducing its representation to 32-bits and removing
the CORDIC exponential module while maintaining almost the same speed-up as before. The next
chapter will describe the attempt made to further expand upon the idea of moving-horizon neural
approximation, approximating the combination of both the MHE and the MPC as a single ANN.
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4 APPROXIMATING MOVING-HORIZON ESTIMATION
AND MODEL PREDICTIVE CONTROL

In this chapter, we will present a new contribution on approximating a combination of both the
MHE and the MPC using neural networks, specifically the RBF. Following the same pattern as
Chapter 3, we first characterize the idea, its conception, software implementation, failures, and
iterations. In the second section, we present the results of the main iterations and compare the
noise each one can handle, also specifying the parameters used in each experiment.

4.1 METHODOLOGY

It was initially planned to progress the approximate MHE one step closer to real-time imple-
mentation by running it on a didactic inverted pendulum testbench. However, this plan was foiled
by unpredictable circumstances such as the COVID-19 pandemic. We then needed a different final
contribution that can be done in simulations and further improves the possibilities and usability of
the MHE in real applications and industry.

Some of the potential contributions conceived were: using a metaheuristic algorithm in place
of the current optimization one or the k-means algorithm; switch the model system for one that has
stricter timing requirements; try other neural network architectures. While the first and third ideas
are interesting they do not have much to improve on the present design. The first idea is something
that is researched to make the optimization faster in a real embedded MHE, since we take the
offline optimization and approximate MHE approach it is better to use the best optimization and
clustering algorithms as the time it takes is not an issue. The third idea has similar problems, as
the decision to change the RBF for other NN architectures would most likely mean an NN with
more complexity and number of neurons.

On the other hand, the second idea was the addition most recommended from the article peer
review. The reviews suggested tests on more complex systems, such as a drone. Nevertheless, the
current input would not be enough to test the state estimation in the drone case, it is then mandatory
to implement a control system to stabilize and move the drone. Hence, we consider the MPC since
it is one of the most used and researched controllers, both by itself and more recently utilized in
conjunction with the MHE as shown in Chapter 2.

The MPC presented in (Sampaio 2018) is used as a basis along with its inverted pendulum
case study. It is then needed to combine and adapt both the MPC and MHE programs to work on a
step-by-step basis instead of the full simulation batch previously employed as shown by Fig 4.1.
After successfully combining both programs and verifying that they were working individually
and also capable of communicating with each other, some crucial problems were found and among
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Figure 4.1: Step-by-step of the MHEC implementation.

those, there were two main issues. The first one is that the control was not capable of stabilizing
the system when using the MHE to estimate the missing states with some noise. And the second is
that the control system stopped trying to stabilize after some unsuccessful tries.

Many attempts were made to resolve these problems, such as tunning the MPC parameters,
changing the noise levels, varying the horizons of both the MPC and the MHE, decrease sampling
time, and adjusting the MPC cost function. Tunning the MPC parameters greatly altered the
results, however even with an extensive search varying all 4 parameters in Q, 4 in () and R, it was
not capable of doing the swing-up motion and stabilizing the pendulum. It was then decreased
the noise input on the system state reading to evaluate at which point it would work, at each
alteration of noise it was necessary to re-tune the MPC, as certain weights obtained better results
in noise-rich data while others did the opposite. Not even the MPC without the MHE was capable
of the swing-up and stabilizing the system with the initially tested noise of 0,02 and 0,1 for the
linear and angular positions, although it can resist more noise.

Another situation observed when combining the MPC and MHE was that when increasing the
horizon size of the MHE the results worsened for the MPC. To counter that a new parameter for the
MHE was created, a weight that indicates how much the cost function will value newer estimations
over older ones. This parameter was varied between 1 and 1,5, the first being the standard MHE.

After expending a lot of effort trying to resolve this issue without success, it was in our best
interest to comply with extremely low noise or forgo the noise entirely. Nevertheless, the second
main problem was solved by altering the way the cost function dealt with the angles, a program
was made to limit the read data of the angular position between —7 and 7. This problem happened
because as the control tried to swing-up the pendulum to then stabilize, the angular position kept
increasing and as such, the MPC stopped working altogether as doing differently would only
increase the error.

Thereafter, it was possible to find a tunning that, with low noise and the angle issue fixed,
was able to stabilize the system for some seconds, but not forever. Taking it as an initial good
enough result we decided to take it to the next level shown in Fig 4.2, which is the approximate
version using an RBF neural network. However, this time it will approximate the result obtained
by both the MPC and MHE as one single network, having its input be the one from MHE and the
expected output by the control signal from the MPC. The construction and training of the NN are
the same as previously discussed in subsection 3.1.1, the only changes being using the control
signal as the expected output and that the R-squared is not a good indicator anymore. This happens
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Figure 4.2: Dataflow of the AMHEC implementation.

because while the NN is approximating the control signal given by the MPC, our real intention
is to stabilize the system. In (Sampaio 2018) they show that even with an R-squared result better
than 0,95 the system can still not be stabilized, and sometimes with values worse than that they
can. So, to evaluate the NN, it will be indispensable to test it in the model system and analyze its
results. To aid in the evaluation we employ two methods, one is the MSE between the angular
position of the expected stabilization by the approximated one. The other is called stable time and
as the name previews it indicates how much time the system was able to be stabilized, it starts with
the same value as the number of samples in the simulation, and for each iteration that the system
is considered stable it decreases its value. Yet, even after thousands of different tunings, it was
not possible to find an RBF neural network capable of swinging-up and stabilizing the inverted
pendulum, all of the results were not even close to being capable of doing the swing-up, the control
signal was all too small for the pendulum to oscillate enough.

41.1 Switch MHEC

After contemplating the results and some failed test trials, the next considerable idea was
the prospect of dividing the problem and consequently the controller into two main parts, the
non-linear swing-up, and the stabilization. The basis for this decision is that the weights desired
on the swing-up were different from the ones needed on the stabilization phase, the former dealing
with large variations on angular position while the latter must maintain this variation to a minimum.
With this plan in mind, we must have two different tunings for each control, the swing control must
be capable of oscillating the pendulum from rest and stabilizing it for a bit, and the stabilizing
control must be capable of maintaining the pendulum inverted while the cart moves side-to-side.
Next, we assess the results from each of these tunning methods and choose the seemingly best
controls. Then, we implement a switch function that changes the weights of the MPC during the
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simulation when the angular position reaches a certain threshold. Finally, we run some simulations
with this switching-control to check if there were improvements in the results.

As we now have two MPC controls to tune, the time needed to do this also doubles. To
decrease the time spent tuning we further inspected the effects of each of the MPC parameters.
In this manner, we realized that the way we were employing the Q and ()¢ one of them was
made redundant, as such we removed the () y parameter to simplify tuning the control. The Q) is
used as an extra weight pulling the trajectory to the desired endpoint, but this becomes redundant
because the trajectory being used is a step from 7 to 0, which is the desired endpoint. Another
parameter that needed consideration was the MHE horizon size, as a smaller window is better for
the MPC but gives less information for the NN training. As such, we initially employed a horizon
size of 5 however, to gain better results on the NN training phase size of 10 was reached after
experimentations and evaluation on both results of the MPC and the NN.

With this new configuration, the MHEC was able to endure some more noise, but still not
enough, and stabilize the system for an undetermined time duration. With these promising
results, we once again try to construct and train the approximate NN, but now it will need what
initially seems to be two different networks. To keep the initial concept of low complexity and
computational cost we plan to have both neural networks possess the same number of neurons, this
way with only altering the value of the weights and centers it is possible to dynamically switch
the NN being used. We then train the NN by following the steps shown in Fig 4.3. These steps
are very much like the ones in Fig 3.3 but here we train two neural networks and use different
indicators to assess them.

The NN that maintains the system stabilized was possible to train, but the non-linear component
of the swing-up motion was too complex for the RBF neural network chosen by this method.
We then adjust our method to first try to find an RBF network capable of successfully doing the
swing-up motion and then using its configuration train another for the stabilization. This, however,
was also a failure. Most results were similar in that they could not accompany the vast oscillation
that was needed in the input signal, meaning that while the NN oscillate the control signal it did not
have the necessary amplitude to have the desired effect. Some of the configurations were capable
of making the swing-up motion but at the cost of extrapolating the pre-determined input and state
limits, which immediately backfires by having the network and the system going out of control.

41.1.1 Other neural networks and SVM

To serve as a comparison we decided to try and approximate the swing-up by using other types
of neural networks. In this case we tested in some of the already implemented types on Matlab,
using functions as feedforwardnet, fitnet, cascadenet. Initially, we tested by using a single hidden
layer similar to the RBF composition and complexity, this was unsuccessful. Next, we tested
using multiple hidden layers and several neurons, though not in an extensive manner, this test was
also met with failure. The same problems observed on the RBF were also present on these NN
architectures.
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As a last resort, we tested Support Vector Machines (SVMs) trained using the NIOTS program
used in (Santos et al. 2017). Fortunately, they were able to fit the swing-up function and stay
within the pre-determined boundaries. This proves the concept that it is possible to approximate
the non-linear swing-up motion by machine learning, however, due to time constraints this work
was not capable of finding the solution to solving the problems observed on the RBF networks. It
was also not possible to finalize the steps marked as red on the Fig 4.3, leaving it as a future work
to be finished.

In the next section, we will show the most relevant graphics, tables, and data obtained through
the realization of this methodology, as well as discuss and analyze its results.

4.2 RESULTS AND ANALYSIS

In the present section, we display the results for the MHEC implementation in Matlab using
the same approximate solutions of the RBFMHE. To this end, we use a simulated case study and
analyze its results.

4.2.1 Case Study

X
—>
[ u |
M
u y :m—bx

(a) Inverted Pendulum (b) Free body Diagram 1

(c) Free body Diagram 2

Figure 4.4: MHEC case study

This case study employed was described in (Alaniz2004) and then wused by
(Mercieca e Fabri 2012) to test many techniques of predictive control. The optimal MPC code
applied and modified in this dissertation is from (Sampaio 2018), which also adopts this model
system as a case study to illustrate its development. Figure 4.4 presents the model system along
with the free body diagrams, while the Equations 4.1 describe its non-linear dynamics. The
equations are expressed in terms of the state variables x, &, 6, and 0, which are, respectively, the
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cart position on the rail, its linear velocity, the pendulum inclination angle, and its angular velocity.
The constants present in Table 4.1 are M the mass of the cart, m the uniformly distributed mass
of the pendulum’s body, I is half the length of the pendulum, b is the surface friction, h is the
rotation friction damping coefficient, g is the gravity’s acceleration, and u represents the control
force applied to the cart.

1 .. .
T = * (u — b — mlf cos § + mlf*sin 6),
) M3+ m . (4.1)
0 = Tk (mglsin @ — mli cosd — ho).

The simplified cost function utilized is:

TOR) () = D205 +) = Y O+ D) 1+ D2 160K+ ) — s [ +5V) = s [, -
. - (4.2)

To be able to control the system it is imperative to define the parameters related to its dynamics,
such as the sampling time (7}), the physical boundaries of the states (2,,4z, Tmin) Or of the control
signal (Ymaz, Ymin) and the limits of the actuator (i, Umaz and At,,,). The parameters specific
for the control must also be defined, such as the prediction horizon (N), the control horizon (V,),
the weighting matrix of states (Q), the weighting matrix of steady-states (()s), and the weighting
matrix of the control signal (R). These are also shown in the Table 4.1.

Table 4.1: Case study 2 parameters.

Control parameters | Value

T, 100 ms
Tmin -0.5m
Tomaz 0.5m
Upnin -50 N
Umaz 50N
Aoz 50N

N 20

Nc 10

System constants Value

m 7.3 Kg

M 14.6 Kg

g 9.81 m/s?
1 1.2m

b 14.6 Kg/s
h 0.0136 Kg * m?/s
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4.2.2 Optimal MHEC

After defining the model system that will be used, now we start testing and iterating upon
the model predictive controller that will be combined with the moving horizon estimator. Table
4.2 presents the parameters with the best results found among those tested, they also will be the
ones utilized in the following figures. In Appendix I there are figures which show how the system
behaves when altering some of the individual parameters such as the MHE’s horizon and weight,
and the MPC'’s prediction and control horizons. For a more in-depth analysis on how the matrices
Q and Q)¢ affect the system look upon (Mayne et al. 2000).

Table 4.2: Controller parameters.

Controller MPC MHEC MHEC _stable MHEC _swingup
Q 1400875 10 140087510 | 100 100 700 700 | 700 400 1000 100
Qf 1 100 1000 100 | 1 100 1000 100 - -
R 1 1 1 1
H - 10 10 10
w - 1.1 1 1

The testing also made it possible to identify the maximum noise value that each controller
employ can handle without becoming unstable, we call this the limit noise. In Table 4.3 it is stated
the value for each of the noises that will appear on the following figures, the noise considered as
high is one that not one of the controllers was capable of stabilizing and it is the same previously
used on the RBFMHE section of this dissertation. The Figures 4.5 will show the resulting angle ¢
that the controller obtained for each level of noise, followed by the Figures 4.7 with two figures
demonstrating visually the amplitude of each state’s level of noise.

Table 4.3: Noise table.

Type of noise High noise Limit noise | Limit noise L?mit noise
MPC MHEC Switch MHEC
Noise value Position (cm) Se-2 2e-2 8,59¢-4 5e-3
Angle (rad) le-1 3e-2 8,59¢-4 5e-3

First we notice in Figures 4.5, 4.6 and 4.7 that the higher the noise, bigger the delay on the
control to stabilize the system. When the system has no noise all the controllers have no problem
stabilizing it seamlessly. However, in the optimal MPC’s limit noise we note that even when the
pendulum is near its unstable equilibrium point the control is struggling to maintain it. For the
high noise, the MPC was capable of preserving the stability for more than a few iterations, but
the Switch MPCMHE tried to arrive at the stability more times quicker. The graphs in Figure 4.5
compare the results of each controller for each level of noise, while Figure 4.6 does the opposite
and compares the results from all the controllers for each type of noise, remembering that the limit
noise for each controller is different.

In Table 4.3 and Figure 4.7 we can also recognize that the system and control handle the noise
on the linear position better than in its angular position. When analyzing the high noise mean
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on percentile the linear noise becomes 10% of its maximum possible value, while the angular
noise becomes close to 3%. It is important to reiterate that these values are the mean of a normal
probability curve, that is why there are values much higher than those in Figure 4.7. This figure
also shows that together with Table 4.3 that there is a difference of an order of magnitude between
the limit noise of the MPC’s to the Switch MHEC and two orders of magnitude to the MHEC,
clearly demonstrating an improvement in Switch MHEC’s part on handling noise better than the
pure MPCMHE.

4.2.3 Approximate MHEC

The first attempt to train and approximate was made using the MHEC, which its best results
were not promising and are presented in Figure 4.8. From this attempt, we learned two main points,
that a bigger MHE’s horizon improved the training as there is more information. And that the
non-linear swing-up and the stabilization were almost polar opposites, they first need to employ
high amplitude signal in sequence while the latter requires a more fine and low amplitude signal
control. This brought the idea of separating the control in two for each part of the process, thus
creating the version Switch MHEC here applied.

We then tune and create a training dataset for each of the controls. At first, we tried to train
the stabilizing control, and using its configuration, train the swing-up approximation. Employing
the same steps from the approximate MHE to determine, we arrived at the architecture presented
in Figure 4.9, with 24 neurons and 34 inputs, the new input refers to the control linear position
reference. With this NN we acquire the Figures 4.10 and 4.11, the former displaying the results
of the stabilization approximation moving the cart from one position to another maintaining the
pendulum stable. This NN approximation gives a smoother control signal curve and its angular
position has a greater variation than expected, but it is still capable of keeping the pendulum stable
during the whole motion. While the latter figure exhibits the results of the approximate swing-up
control with its expected results, though this is not capable of its desired function, which is to
swing the pendulum until it arrives close to ¢ = 0. From Figure’s 4.11 that the approximation’s
control signal is not capable of dealing with the high amplitude and frequency variation, and as a
result, its output is smoothed too much to decrease the mean-squared error.

As this method of training did not succeed, we decided to capitulate on the idea of it working
on any position on the rail. Thus, the training data is made from only a swing-up simulation
from the center, trying to force the neural network to overfit the dataset. With this attempt, we
attained the results seen in Figures 4.12 and 4.13 which are the best for the mean-squared error
and the stable time cost function, respectively. Both produced better results that come closer to the
expected behavior, yet both also, unfortunately, extrapolate the system limits in both control signal
and cart position. This illustrates one of the down points of this type of approximation, the loss of
the capability to impose the system restrictions on the controller.
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Table 4.4: SVM parameters.

Modelo Kernel C Gama Epsilon MSE Total SV RHO
LibSVM | RBF kernel | 8.960187 | 0.240270 | 1.102487 | 21.961317 145 -0.959801

4.2.4 Other neural networks and SVM

Finally, we tested other architectures of neural networks as an alternative to the RBF, to verify
if the difficulty steemed from the architecture. First, we confirm that Matlab’s feedforward is
capable of approximating the stabilizing control using the same parameters as Fig 4.9. Figure 4.14
verifies this, but it has a worse result than its RBF counterpart, its control signal is rougher and
has a wider variation in 6 during its movement. Training and testing it for swing-up control also
presents similar results to the RBFs and Figure’s 4.8.

Next, we analyze it with multiple hidden layers and a varying number of neurons on each of
them. One example can be seen in Figure 4.15 which has 3 hidden layers and [31,15,5] neurons
on each layer. Using this configuration and the functions for training a feed-forward and a fitnet,
we acquire Figures 4.16 and 4.17. However, both of these contain the same problems verified on
the RBF’s results, extrapolation of the pre-determined limits, and they also have a worse 6 swing
variation.

As a last resort to check that a neural network is capable of fitting this curve, we employ the
NIOTS II program for training support vector machines described in (Santos et al. 2017). The
program is executed following the configuration shown in Figure 4.18 and trained using the overfit
dataset. It is then necessary to test and choose the best fit from the results obtained from its Pareto’s
frontier. With one of its results, with the parameters presented in Table ?? we obtain Figure 4.19. It
shows that the SVM was capable of overfitting the desired signal, it also stayed within the desired
boundaries. As such, it serves as a proof of concept that neural networks can in fact fit this signal,
just that the RBF architecture used is still lacking something unknown.

4.3 CHAPTER FINAL CONSIDERATIONS

The implementation of the MHEC was successful and it was possible to increase its noise
robustness by separating the control into two differently weighted parts and switching between them
when necessary. The results from the neural approximation were terrible for the simple MHEC, but
with the switching mode, it was possible to approximate the stabilization part of the control. On
the other hand, the swing-up control faced many difficulties, even with a purposefully overfitted
ANN it was not capable of properly approximating the control function without overstepping
its boundaries. Lastly, an SVM approximation attempt was made successfully for the swing-up
control, which suggests it is a promising alternative, but still needs more research. The next chapter
will congregate all of this dissertation results and conclusions, suggesting future improvements
and alternatives paths to develop from.
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5 CONCLUSION AND FUTURE WORK

In this dissertation we presented two main approaches to accelerate the MHE method and
facilitate its usage in real-time applications. Both approaches involve approximating the function
results by employing RBF ANNs. Also using the inherent parallel structure of ANNs and FPGAs,
what is a synergistic combination since the FPGAs allows the ad-hoc implementation of fast
parallel computations directly on hardware. However, while one approach cover only the MHE,
the other encompass both MHE and MPC.

In the first case, the implications of the work herein presented confirm the expectations of the ap-
proximate filter presented in (Alessandri, Baglietto e Battistelli 2008) and (Alessandri et al. 2011),
for the first time implemented in hardware in the present work: it is possible to calculate the esti-
mation offline and accurately approximate the state estimates by means of an ANN online, which
performs very fast due to its inherent parallel architecture and enabled by its direct hardware
implementation. Being further improved since its article publication (Brunello et al. 2020) by
solving the precision problem and reducing its representation from 64 to 32-bits, also further
simplifying it by removing the CORDIC module from the floating-point unit as it was using only
the Taylor series approximation method.

In spite of this, the second case was not as successful. The combination of MHE and MPC
worked despite its inherent loss of robustness to noise from having to estimate two states. However,
it was not possible to obtain a ANN that approximates both its response to the non-linear and
linearizable parts of the system. This resulted in a development of two separated controls, one for
each stage with the vision of a dynamic weight switchin implemetation on hardware. The new
approach produced better results, being capable of approximating the control response for the
linearizable step with 24 RBF neurons. Though, the approximations of the non-linear step did
not work, be it due to overstepping the system limits or its control signal being too smoothed out.
Also, as it was not found a RBF approximation for the non-linear step, we could not implement
and test the dynamic weight switching in hardware. We tested the possibility of the problem
being the RBF architecture and tested two already implemented ANN architectures on Matlab, the
feed-forward and the fitnet, yet both still did not correctly approximate the non-linear control. As a
last attempt, we utilized the NIOTS program (Santos et al. 2017) to train SVMs to approximate the
non-linear control signal. We finally obtained a result that did not exceed the system boundaries.
Unfortunately, due to time constraints it was not possible to further develop and research these
results.
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5.1 FUTURE WORK

Even though the methods and architectures shown in this dissertation have been applied to some
degree of success, there are still many improvements and variations possible. Some possibilities
and suggestions with no specific order or ranking are:

5.1.1 Approximate Moving-Horizon Estimation
* Test other types of clusterization algorithms beyond the k-means;
* Compare the optimization algorithm used on the MHE with metaheuristics approaches;
» Test many types of radial basis functions;
* Test other types of ANNs architectures;

* Propose a didactic test-bench with the inverted pendulum (Magana e Holzapfel 1998) for
receding-horizon estimation and control in FPGAs with approximate solutions and ANNs
(Zoppoli et al. 2020);

* Test the approximate MHE implemented in FPGAs in real-world systems with fast dynamics
(Ayala, Rakotondrahe e Coelho 2018).

5.1.2 Approximate MHEC
* Solve the non-linear RBF approximation problem;
* Embed and simulate the system in the FPGA;
* Implement and test the dynamic weight switching in a HIL simulation;

* Explore ways to impose the system restrictions on the ANN training, one possibility being
the set projection discussed in (Alessandri et al. 2011);

* Test other types of RBF cost functions;

» Approximate the whole MHEC function using SVMs.
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Figure I.1: R-squared surface of all states of RBFMHE variation by n° of neurons and delta.

N° of Neurons/ Delta(le-3/lter) | Minimo da linha

1
2
3
4
5
6
7
8
9
10 0,6472769 0,57592611 | 0,59580603 | 0,60926723 | 0,6195527 | 0,62760738 | 0,63401648 | 0,63922397 | 0,64356286 | 0.6472769
11 0,4489778 0,39457326 | 0,40823853 | 0,41963649 | 0.42845634 | 0,43507715 | 0.44003603 | 0,44379392 | 0,44669362 | 0.4489778
12 0,53283554 0,42559751 | 0,45002956 | 0,4617283 | 0,47144398 | 0,48110628 | 0,49106279 | 0,50131085 | 0,51176135 | 0,52230568 | 0,53283554
13 0,72802571 0,5124122 | 0,57410639 | 0,62021328 | 0,65207997 | 0,67444184 | 0,69084723 | 0,70340032 | 0,7133289 | 0,72137833 | 0,72802571
I @ 09469373 0,76838613 | 0,86883407 | 0,90622245 | 0,92314926 | 0,93223901 | 0,93772443 | 0,94131152 | 0,94379621 | 0,94559316 | 0,0469373
15 0.95080931 0,77278331 | 0,86764689 | 0,90967131 | 0,92958199 | 094022472 | 0,04652243 | 094995297 | 095033847 | 0,8506107 | 0,95080931
16 0,95046692 0,68014674 | 0,85926404 | 0,01588276 | 0,93914864 | 0,94811491 | 0,04891721 | 0,04949113 | 0,04991139 | 0,9502262 | 0,95046692
17 0,95029109 0,6026312 | 0,86155844 | 0,01641238 | 0,03927832 | 0,9481052 | 0,94891545 | 0,94942043 | 0,04980325 | 0,05008082 | 0,95029109
18 0,9501424 0,7680783 | 0,67905605 | 0,9214615 | 0,94056024 | 094930675 | 0,94957019 | 094977245 | 094992778 | 09500481 | 0,0501424
19 0.94821257 081344914 | 0,88184212 | 0,91048284 | 0,92500265 | 0,93336993 | 0,9386643 | 084225585 | 0,94482418 | 0,94673802 | 0,94821257
20 0,95145621 0,82089816 | 0,89308361 | 0,02780615 | 0,94545087 | 0,95144766 | 0,95145287 | 0,85145514 | 0,05145602 | 0,95145621 | 0,95145603
21 0,9513148 | 0,41882755 | 0,93643087 | 0,94583017 | 0,95081489 | 0,95095009 | 0,95104937 | 0,95112662 | 0,951168834 | 0,95123859 | 0,05128009 | 0,0513148
22 0,95100717 | 0,40978507 | 0,95142016 | 0,95175261 | 0,95187137 | 0,95190599 | 095190717 | 0,95189605 | 0,9518813 | 0,95186639 | 0,05185259 | 0,9518403
23 0.95204693 | 0,72093148 | 0,95160808 | 0,95197739 | 0,95204693 | 0,95204131 | 0,95201842 | 0,95199359 | 095197065 | 0,95185029 | 0,05193231 | 0,95191637
24 0,95201427 | 0,74784647 | 0,05198236 | 0,95201427 | 0,95200585 | 0,95109636 | 0,0519908 | 0,05198645 | 0,95108312 | 0,9519804 | 0,95107803 | 0,95197588
25 0,95206583 | 0,74451652 | 0,05188801 | 0,95205767 | 0,95206557 | 0,95206583 | 0,05206354 | 0,05205964 | 0,95205453 | 0,95204852 | 0,9520419 | 0,05203489
26 0,95105009 | 0,58390752 | 0,05177891 | 0,95185076 | 0,95190339 | 0,95193033 | 0,05104296 | 0,05104837 | 0,95105009 | 0,95194991 | 0,95104873 | 0,05164705
27 0.95108257 | 0,46472968 | 0,95166546 | 0,95187115 | 0,95194939 | 0,95197647 | 095198257 | 0,95198013 | 095197445 | 0,95196782 | 0,95196122 | 0,95195503
28 0.95201452 | 0.87566478 | 0,95201452 | 0,95196583 | 0,95184703 | 0,95194233 | 095194229 | 0,95194306 | 095192577 | 0,85177217 | 0,95176466 | 095175914
29 0,95207105 | 0,82005252 | 0,05207105 | 0,95207009 | 0,95206563 | 0,95205747 | 0,05204844 | 0,05203961 | 0,95203128 | 0,95202345 | 0,95201603 | 0,95200901
30 0,95213331 | 0,72935837 | 0,05213331 | 0,95212685 | 0,95212259 | 0,95211634 | 0,05210891 | 0,0520988 | 0,95208741 | 0,95207551 | 0,95206371 | 0,05205242

Figure 1.2: R-squared RBFMHE table.
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N° of Neurons/ Delta(1/2"|ter) | Minimo da linha
6
7
8
9
10
11
12 0,74363267 0,7402218 | 0,74363267 | 0,74182332 | 0,74357796 | 0,74286419
13 0,80094117 0,72793925 | 0,79560441 | 0,80001509 | 0,79770505 | 0,79970455 | 0,80094117
0,67333126 | 0,93454212 | 0,94992584 | 0,950023 | 0,94996834 | 0,94999158 | 0,95010328
0,94619066

18 0,64795411 | 0,95022541
19 0,73660493 | 0,94062209
20 0,78644621

Figure [.3: R-squared RBFMHE with cost function Gauss-1 table.
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Figure I.1: Result comparison of multiple MHE horizon sizes for the MHEC.
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Figure 1.2: Result comparison of multiple MHE weights for the MHEC.
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Estimated theta

Estimated theta
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Figure 1.3: Result comparison of multiple MPC prediction horizon sizes for the MHEC.
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Figure 1.4: Result comparison of multiple MPC control horizon sizes for the MHEC.
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