Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/41196
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: On the dimension of the space of harmonic functions on transitive shift spaces
Auteur(s): Cioletti, Leandro Martins
Melo, Leonardo
Ruviaro, Ricardo
Silva, Elves Alves de Barros e
Assunto:: Mecânica estatística
Funções harmônicas
Princípio de invariância
Processos de Markov
Date de publication: 21-avr-2021
Editeur: Elsevier
Référence bibliographique: CIOLETTI, L. et al. On the dimension of the space of harmonic functions on transitive shift spaces. Advances in Mathematics, v. 385, 107758, 16 jul. 2021. DOI: https://doi.org/10.1016/j.aim.2021.107758.
Abstract: In this paper, we show a new relation between phase transition in Statistical Mechanics and the dimension of the space of harmonic functions (SHF) for a transfer operator. This is accomplished by extending the classical Ruelle-Perron-Frobenius theory to the realm of low regular potentials defined on either finite or infinite (uncountable) alphabets. We also give an example of a potential having a phase transition where the Perron-Frobenius eigenvector space has dimension two. We discuss entropy and equilibrium states, in this general setting, and show that if the SHF is non-trivial, then the associated equilibrium states have full support. We also obtain a weak invariance principle in cases where the spectral gap property is absent. As a consequence, a functional central limit theorem for non-local observables of the Dyson model is obtained.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
DOI: https://doi.org/10.1016/j.aim.2021.107758
metadata.dc.relation.publisherversion: https://www.sciencedirect.com/science/article/abs/pii/S0001870821001973
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/41196/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.