http://repositorio.unb.br/handle/10482/41196
Título: | On the dimension of the space of harmonic functions on transitive shift spaces |
Autor(es): | Cioletti, Leandro Martins Melo, Leonardo Ruviaro, Ricardo Silva, Elves Alves de Barros e |
Assunto: | Mecânica estatística Funções harmônicas Princípio de invariância Processos de Markov |
Data de publicação: | 21-Abr-2021 |
Editora: | Elsevier |
Referência: | CIOLETTI, L. et al. On the dimension of the space of harmonic functions on transitive shift spaces. Advances in Mathematics, v. 385, 107758, 16 jul. 2021. DOI: https://doi.org/10.1016/j.aim.2021.107758. |
Abstract: | In this paper, we show a new relation between phase transition in Statistical Mechanics and the dimension of the space of harmonic functions (SHF) for a transfer operator. This is accomplished by extending the classical Ruelle-Perron-Frobenius theory to the realm of low regular potentials defined on either finite or infinite (uncountable) alphabets. We also give an example of a potential having a phase transition where the Perron-Frobenius eigenvector space has dimension two. We discuss entropy and equilibrium states, in this general setting, and show that if the SHF is non-trivial, then the associated equilibrium states have full support. We also obtain a weak invariance principle in cases where the spectral gap property is absent. As a consequence, a functional central limit theorem for non-local observables of the Dyson model is obtained. |
Unidade Acadêmica: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
DOI: | https://doi.org/10.1016/j.aim.2021.107758 |
Versão da editora: | https://www.sciencedirect.com/science/article/abs/pii/S0001870821001973 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.