Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/40828
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_MateusMaltaFleury.pdf709,53 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorMesquita, Jaqueline Godoy-
dc.contributor.authorFleury, Mateus Malta-
dc.date.accessioned2021-05-06T23:27:41Z-
dc.date.available2021-05-06T23:27:41Z-
dc.date.issued2021-04-06-
dc.date.submitted2020-12-16-
dc.identifier.citationFLEURY, Mateus Malta. Massera’s Theorem for generalized ODEs and applications. 2020. 120 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2020.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/40828-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2020.pt_BR
dc.description.abstractNesse trabalho, o objetivo principal é provar uma versão do Teorema de Massera para as equações diferenciais ordinárias generalizadas (EDOs generalizadas). Tal teorema fornece condições para garantir a existência de soluções periódicas para equações diferenciais quando há uma solução limitada. Além de estudar esse resultado para EDOs generalizadas, usamos as correspondências entre essas equações e as equações diferenciais em medida, equações diferenciais com impulso e equações dinâmicas em escalas temporais para obter versões do Teorema de Massara para cada uma dessas equações. Esses resultados são novos na literatura e podem ser encontrados em [14].pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).pt_BR
dc.language.isoInglêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleMassera’s Theorem for generalized ODEs and applicationspt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordTeorema de Masserapt_BR
dc.subject.keywordSoluções periódicaspt_BR
dc.subject.keywordEquações diferenciaispt_BR
dc.subject.keywordEquações impulsivaspt_BR
dc.subject.keywordEquação dinâmica em escala temporalpt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1In this work, the main objective is to prove a version of Massera's Theorem for generalized ordinary differential equations (generalized ODEs). Such theorem provides conditions to guarantee the existence of periodic solutions for differential equations when there is a bounded solution. Besides studying this result for generalized ODEs, we use the correspondences between these equations and the measure differential equations, impulse differential equations and dynamic equations on time scales to obtain versions of Massara's Theorem for each of those equations. All these results are new in the literature and they can be found in [14].pt_BR
dc.contributor.emailmateus_fleury@hotmail.compt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Matemáticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.