Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/39652
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ARTIGO_ImputationMethodReduce.pdf945,54 kBAdobe PDFVisualizar/Abrir
Título : Imputation method to reduce undetected severe acute respiratory infection cases during the coronavirus disease outbreak in Brazil
Autor : Oliveira, Silvano Barbosa de
Ganem, Fabiana
Araújo, Wildo Navegantes de
Casabona, Jordi
Sanchez, Mauro Niskier
Croda, Julio
metadata.dc.identifier.orcid: http://orcid.org/0000-0002-6665-6825
Assunto:: Covid-19
Infecções respiratórias
Teste de laboratório
Fecha de publicación : 2020
Editorial : Sociedade Brasileira de Medicina Tropical - SBMT
Citación : OLIVEIRA, Silvano Barbosa de et al. Imputation method to reduce undetected severe acute respiratory infection cases during the coronavirus disease outbreak in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, Uberaba, v. 53, e20200528, 2020. DOI: https://doi.org/10.1590/0037-8682-0528-2020. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822020000100659&lng=en&nrm=iso. Acesso em: 23 nov. 2020. Epub 14-Set-2020.
Abstract: INTRODUCTION: The coronavirus disease (COVD-19) outbreak has overburdened the surveillance of severe acute respiratory infections (SARIs), including the laboratory network. This study was aimed at correcting the absence of laboratory results of reported SARI deaths. METHODS: The imputation method was applied for SARI deaths without laboratory information using clinico-epidemiological characteristics. RESULTS: Of 84,449 SARI deaths, 51% were confirmed with COVID-19 while 3% with other viral respiratory diseases. After the imputation method, 95% of deaths were reclassified as COVID-19 while 5% as other viral respiratory diseases. CONCLUSIONS: The imputation method was a useful and robust solution (sensitivity and positive predictive value of 98%) for missing values through clinical & epidemiological characteristics.
metadata.dc.description.unidade: Faculdade de Ciências da Saúde (FS)
Departamento de Saúde Coletiva (FS DSC)
DOI: https://doi.org/10.1590/0037-8682-0528-2020
Aparece en las colecciones: Artigos publicados em periódicos e afins
UnB - Covid-19

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/39652/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.