http://repositorio.unb.br/handle/10482/37874
Title: | Synthesis and electrical properties of strontium-doped lanthanum ferrite with perovskite-type structure |
Authors: | Paiva, José Antônio Euzébio Daza, Paola Cristina Cajas Rodrigues, Fernanda Amaral Ortiz Mosquera, Jairo F. Silva, Cosme Roberto Moreira da Muñoz, Marly Montero Meneses, Rodrigo Arbey Muñoz |
Assunto:: | Método de Pechini Ferrita de lantânio dopado com estrôncio Células a combustível de óxido sólido Espectroscopia de impedância |
Issue Date: | 2020 |
Publisher: | Elsevier |
Citation: | PAIVA, José Antônio Euzébio et al. Synthesis and electrical properties of strontium-doped lanthanum ferrite with perovskite-type structure. Ceramics International, 2020. DOI: https://doi.org/10.1016/j.ceramint.2020.04.212. Disponível em: https://www.sciencedirect.com/science/article/pii/S0272884220311561?via%3Dihub. Acesso em; 26 maio 2020. |
Abstract: | In this study, we prepared strontium-doped lanthanum ferrites with the perovskite-type structure for application as solid oxide fuel cell (SOFC) cathodes. We used the Pechini method to prepare strontium-doped lanthanum ferrites with the strontium:lanthanum molar ratios of 20:80 and 40:60. The resulting doped materials were characterized using various analytical tools. The calcination process was conducted at 450 °C because above this temperature, the stabilization of mass loss occurred and no phase transformation was observed. The X-ray diffraction results confirmed the mixing of the powder phases after the calcination process and the presence of a single powder phase in the air-sintered samples. The high-resolution transmission electron microscopy results revealed the presence of agglomerated nanoparticles smaller than 20 nm in size in the samples. The electrochemical impedance spectroscopy results revealed that the sample with 20% strontium exhibited a conductivity of 3.9 × 10−3 S cm−1 at 95 °C and activation energy of 0.37 eV. In contrast, the sample with 40% strontium exhibited a conductivity of 3.5 × 10−2 S cm−1 and activation energy of 0.29 eV. These results suggest that with an increase in the strontium content, the conductivity of the samples increased, where as the activation energy of the conduction process decreased. Therefore, the ferrites synthesized in this work are potential catalysts for SOFC cathodes. |
metadata.dc.description.unidade: | Faculdade UnB Gama (FGA) |
DOI: | https://doi.org/10.1016/j.ceramint.2020.04.212 |
metadata.dc.relation.publisherversion: | https://www.sciencedirect.com/science/article/pii/S0272884220311561?via%3Dihub |
Appears in Collections: | Artigos publicados em periódicos e afins |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.