Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/35645
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ARTIGO_EstimatingEffectiveElastic.pdf3,6 MBAdobe PDFVoir/Ouvrir
Titre: Estimating the effective elastic parameters of nodular cast iron from micro-tomographic imaging and multiscale finite elements : comparison between numerical and experimental results
Auteur(s): Pereira, André
Costa, Marcio
Anflor, Carla Tatiana Mota
Pardal, Juan
Leiderman, Ricardo
metadata.dc.identifier.orcid: https://orcid.org/0000-0003-0991-8515
https://orcid.org/0000-0003-3941-8335
https://orcid.org/0000-0002-0443-9294
Assunto:: Ferro fundido
Método dos elementos finitos
Micro-tomografia
Date de publication: 2018
Editeur: MDPI
Référence bibliographique: PEREIRA, Andre et al. Estimating the effective elastic parameters of nodular cast iron from micro-tomographic imaging and multiscale finite elements: comparison between numerical and experimental results. Metals, v. 8, n. 9, article 695. DOI: https://doi.org/10.3390/met8090695. Disponível em: https://www.mdpi.com/2075-4701/8/9/695. Acesso em: 23 out. 2019.
Abstract: Herein, we describe in detail a methodology to estimate the effective elastic parameters of nodular cast iron, using micro-tomography in conjunction with multiscale finite elements. We discuss the adjustment of the image acquisition parameters, address the issue of the representative-volume choice, and present a brief discussion on image segmentation. In addition, the finite-element computational implementation developed to estimate the effective elastic parameters from segmented microstructural images is described, indicating the corresponding computational costs. We applied the proposed methodology to a nodular cast iron, and estimated the graphite elastic parameters through a comparison between the numerical and experimental results.
metadata.dc.description.unidade: Faculdade de Ciências e Tecnologias em Engenharia (FCTE) – Campus UnB Gama
Licença:: © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/35645/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.