http://repositorio.unb.br/handle/10482/13934
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2013_SergioMessiasCruz.pdf | 7,04 MB | Adobe PDF | Visualizar/Abrir |
Título: | Implementação de um filtro de Kalman estendido em arquiteturas reconfiguráveis aplicado ao problema de localização de robôs móveis |
Autor(es): | Cruz, Sérgio Messias |
Orientador(es): | Llanos Quintero, Carlos Humberto |
Assunto: | FPGA Robôs móveis Kalman, filtragem de |
Data de publicação: | 14-Ago-2013 |
Data de defesa: | 5-Abr-2013 |
Referência: | CRUZ, Sérgio Messias. Implementação de um filtro de Kalman estendido em arquiteturas reconfiguráveis aplicado ao problema de localização de robôs móveis. 2013. xiii, 81 f. Dissertação (Mestrado em Sistemas Mecatrônicos)—Universidade de Brasília, Brasília, 2013. |
Resumo: | Este trabalho descreve uma arquitetura de hardware para a implementação de uma versão sequencial do Filtro de Kalman Estendido (EKF, do inglês Extended Kalman Filter). Devido ao fato de que o EKF é computacionalmente intensivo, comumente ele é implementado em plataformas baseadas em PC (do inglês Personal Computer) para ser empregado em robótica móvel. Para permitir o desenvolvimento de plataformas robóticas pequenas (por exemplo, aquelas re-
quisitadas em robótica móvel) condições especí cas tais como tamanho pequeno, consumo baixo de potência e capacidade de aritmética em ponto utuante são exigidos, assim como projetos de arquiteturas de hardware especí cas e adequadas. Desta maneira, a arquitetura proposta foi projetada para tarefas de auto-localização, usando operadores de aritmética de ponto utuante
(em precisão simples), permitindo a fusão de dados provenientes de diferentes sensores tais como ultrassom e ladar. O sistema foi adaptado para ser aplicado em uma plataforma recon gurável, apropriada para tarefas de pesquisa, e a mesma foi testada em uma plataforma robótica Pioneer 3AT (da Mobile Robots Inc.) a m de avaliar sua funcionalidade, usando seu sistema de sen-
soriamento. Para comparar o desempenho do sistema, o mesmo foi implementado em um PC,
assim como pela utilização de um microprocessador embarcado na FPGA (o Nios II, da Altera). Neste trabalho, várias métricas foram utilizadas a m de avaliar o desempenho e a aplicabilidade do sistema, medindo o consumo de recursos na FPGA e seu desempenho. Devido ao fato de que
este trabalho só está implementando a fase de atualização do EKF, o sistema geral foi testado assumindo que o robô está parado em uma posição previamente conhecida. ______________________________________________________________________________ ABSTRACT This work describes a hardware architecture for implementing a sequential approach of the Extended Kalman Filter (EKF) that is suitable for mobile robotics tasks, such as self-localization, mapping, and navigation problems, especially when FPGAs (Field Programmable Gate Arrays) are used to execute this algorithm. Given that EKF is computationally intensive, commonly it is implemented in PC-based platforms to be employed on mobile robots. In order to allow the development of small robotic platforms (for instance those required in microrobotics area) speci c requirements such as small size, low-power, and oating-point arithmetic capability are demanded, as well as the design of speci c and suitable hardware architectures. Therefore, the proposed architecture has been achieved for self-localization task, using oating-point arithmetic operators (in simple precision), allowing the fusion of data coming from di erent sensors such as ultrasonic and laser range nder. The system has been adapted for achieving a recon gurable platform, suitable for research tasks, and the same has been tested in a Pioneer 3AT mobile robot platform (from Mobile Robots Inc.) for evaluating its functionality by using its local sensing system. In order to compare the performance of the system, the same localization technique has been implemented in a PC, as well as using an FPGA-embedded microprocessor (the Nios II from Altera Inc.) In this work several metrics have been used in order to evaluate the system performance and suitability, measuring both the FPGA resources consumption and performance. Given that in this work only the update phase of the EKF has been implemented the overall system has been tested assuming that the robot is stopped in a previously well-known position. ______________________________________________________________________________ RESUMEN Este trabajo describe una arquitectura de hardware para la implementación de una versión secuencial del ltro de Kalman extendido (EKF del ingles Extended Kalman Filter). Debido al hecho de que el EKF es computacionalmente intensivo, típicamente es implementado en plataformas basadas en PC's (del ingles Personal Computer) para ser utilizado en robótica móvil. Para per- mitir el desarrollo de pequeñas plataformas robóticas(como las requeridas en robótica móvil) son exigidos condiciones especi cas como su pequeño tamaño, bajo consumo de potencia y capacidad de aritmética en punto otante, así como arquitecturas de hardware especi cas y adecuadas. De esta manera la arquitectura propuesta fue proyectada para tareas de auto-localización, usando operadores de aritmética de punto otante (en precisión simple), permitiendo la fusión de datos provenientes de diferentes sensores tales como ultrasonido y ladar. El sistema fue adaptado para aplicarlo en una plataforma recon gurable, apropiada para investigación, y la misma fue probada en una plataforma robótica denominada Pioneer 3AT (de la compañía Mobile Robots Inc.) utilizando el sistema de sensoramiento de este, con el propósito de validar su funcionalidad. Para comparar el desempeño del sistema, este fue implementado en un PC, así como en un microprocesador embarcado en una FPGA (Nios II, de Altera). En este trabajo, varias métricas fueron utilizadas con el propósito de validar el desempeño y la aplicabilidad del sistema, midiendo el consumo de recursos en la FPGA y su desempeño. Debido al hecho de que en el trabajo solo esta implementado la fase de actualizacion del EKF el sistema general fue probado asumiendo que el robot esta parado en una posición previamente conocida. |
Unidade Acadêmica: | Faculdade de Tecnologia (FT) Departamento de Engenharia Mecânica (FT ENM) |
Informações adicionais: | Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2013. |
Programa de pós-graduação: | Programa de Pós-Graduação em Sistemas Mecatrônicos |
Licença: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.