Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/11163
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2012_MarinaGabrillaRibeiroBardella.pdf1,3 MBAdobe PDFVisualizar/Abrir
Título : Sobre pE-grupos e pA-grupos finitos
Autor : Bardella, Marina Gabriella Ribeiro
Orientador(es):: Rocco, Noraí Romeu
Assunto:: Grupos finitos
Números primos
Fecha de publicación : 13-sep-2012
Citación : BARDELLA, Marina Gabriella Ribeiro. Sobre pE-grupos e pA-grupos finitos. 2012. x, 104 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2012.
Resumen : Um grupo G é um E – grupo (respectivamente, A-grupo) se G é tal que seus elementos comutam com suas respectivas imagens endomorfas (respectivamente, automorfas).Neste trabalho, estudamos algumas propriedades de E-grupos baseadas nos artigos\3-generator groups whose elements commute with their endomorphic images areabelian" e \Minimal number of generators and minimum order of a non-abelian groupwhose elements commute with their endomorphic images", ambos de A. Abdollahi, A.Faghihi e A. Mohammadi Hassanabadi. É possível mostrar que qualquer E-grupo e A-grupo possui classe de nilpotência no máximo 3. Em \Finite 3-groups of class 3 whose elements commute with their automorphic images", A. Abdollahi, A. Faghihi, S. A. Linton, e E. A. O'Brien mostraram que esse máximo _e atingido; para isso construíram um exemplo de um A-grupo de classe de nilpotência exatamente 3. Baseado nesse artigo, estudamos os aspectos teóricos e certos detalhes dos algoritmos (e suas implementações) usados para a construção de tal grupo. ______________________________________________________________________________ ABSTRACT
A group G is an E-group (respectively A-group) if G is such that its elements commute with their endomorphic (respectively automorphic) images. In this work, we study some properties of E-groups based on the papers\3-generatorgroups whose elements commute with their endomorphic images are abelian" and \Minimalnumber of generators and minimum order of a non-abelian group whose elements commute with their endomorphic images", both by A. Abdollahi, A. Faghihi and A.Mohammadi Hassanabadi.It is possible to show that such groups have nilpotency class at most 3. In \Finite3-groups of class 3 whose elements commute with their automorphic images", A. Abdollahi,A. Faghihi, S. A. Linton, and E. A. O'Brien showed that this maximum is reached. To do so they constructed an A-group having nilpotency class precisely 3. Based onthis paper, we study the theoretical aspects and certain details of the algorithms (andtheir implementations) used for the construction of such group.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
Descripción : Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2012.
metadata.dc.description.ppg: Programa de Pós-Graduação em Matemática
Aparece en las colecciones: Teses, dissertações e produtos pós-doutorado

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/11163/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.