Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/54052
Arquivos associados a este item:
Não existem arquivos associados a este item.
Título: Differential entropy estimation with a Paretian kernel : tail heaviness and smoothing
Autor(es): Matsushita, Raul Yukihiro
Brandão, Helena Santos
Nobre, Iuri Ribeiro
Silva, Sergio da
ORCID: https://orcid.org/0000-0001-8864-6356
https://orcid.org/0009-0003-8633-5353
https://orcid.org/0000-0001-8279-4083
Afiliação do autor: University of Brasilia, Graduate Program in Statistics
University of Brasilia, Graduate Program in Management
University of Brasilia, Graduate Program in Statistics
University of Brasilia, Graduate Program in Management
Federal University of Santa Catarina, Graduate Program in Economics
Assunto: Entropia diferencial
Kernel de Pareto
Caudas pesadas
Data de publicação: 25-mai-2024
Editora: Elsevier
Referência: MATSUSHITA, Raul Yukihiro; BRANDÃO, Helena Santos; NOBRE, Iuri Ribeiro; SILVA, Sergio da. Differential entropy estimation with a Paretian kernel: tail heaviness and smoothing. Physica A: Statistical Mechanics and its Applications, [S.l.], v. 646, e129850, 2025. DOI: https://doi.org/10.1016/j.physa.2024.129850. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378437124003595?via%3Dihub. Acesso em: 12 fev. 2026.
Abstract: Differential entropy extends the concept of entropy to continuous probability distributions, measuring the uncertainty associated with a continuous random variable. In financial data analysis, accurately estimating differential entropy is pivotal for understanding market dynamics and assessing risk. Traditional methods often fall short when dealing with the heavy-tailed distributions characteristic of financial returns. This paper introduces a novel approach to differential entropy estimation employing a Paretian kernel function adept at handling tail heaviness’s intricacies. By incorporating an additional smoothing parameter, the Pareto exponent, our method offers flexibility in adjusting to light and heavy-tailed distributions. We compare our approach against established estimators through a comprehensive Monte Carlo simulation, demonstrating its superior performance in various scenarios. Applying our method to foreign exchange market data further illustrates its practical utility in identifying stochastic regimes and enhancing financial analysis. Our findings advocate for integrating the Paretian kernel estimator into the toolkit of financial analysts and researchers for a more nuanced understanding of market behavior.
Unidade Acadêmica: Instituto de Ciências Exatas (IE)
Departamento de Estatística (IE EST)
Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE)
Departamento de Administração (FACE ADM)
Programa de pós-graduação: Programa de Pós-Graduação em Estatística
Programa de Pós-Graduação em Administração
DOI: https://doi.org/10.1016/j.physa.2024.129850
Versão da editora: https://www.sciencedirect.com/science/article/pii/S0378437124003595?via%3Dihub
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.