http://repositorio.unb.br/handle/10482/54052| Título: | Differential entropy estimation with a Paretian kernel : tail heaviness and smoothing |
| Autor(es): | Matsushita, Raul Yukihiro Brandão, Helena Santos Nobre, Iuri Ribeiro Silva, Sergio da |
| ORCID: | https://orcid.org/0000-0001-8864-6356 https://orcid.org/0009-0003-8633-5353 https://orcid.org/0000-0001-8279-4083 |
| Afiliação do autor: | University of Brasilia, Graduate Program in Statistics University of Brasilia, Graduate Program in Management University of Brasilia, Graduate Program in Statistics University of Brasilia, Graduate Program in Management Federal University of Santa Catarina, Graduate Program in Economics |
| Assunto: | Entropia diferencial Kernel de Pareto Caudas pesadas |
| Data de publicação: | 25-mai-2024 |
| Editora: | Elsevier |
| Referência: | MATSUSHITA, Raul Yukihiro; BRANDÃO, Helena Santos; NOBRE, Iuri Ribeiro; SILVA, Sergio da. Differential entropy estimation with a Paretian kernel: tail heaviness and smoothing. Physica A: Statistical Mechanics and its Applications, [S.l.], v. 646, e129850, 2025. DOI: https://doi.org/10.1016/j.physa.2024.129850. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378437124003595?via%3Dihub. Acesso em: 12 fev. 2026. |
| Abstract: | Differential entropy extends the concept of entropy to continuous probability distributions, measuring the uncertainty associated with a continuous random variable. In financial data analysis, accurately estimating differential entropy is pivotal for understanding market dynamics and assessing risk. Traditional methods often fall short when dealing with the heavy-tailed distributions characteristic of financial returns. This paper introduces a novel approach to differential entropy estimation employing a Paretian kernel function adept at handling tail heaviness’s intricacies. By incorporating an additional smoothing parameter, the Pareto exponent, our method offers flexibility in adjusting to light and heavy-tailed distributions. We compare our approach against established estimators through a comprehensive Monte Carlo simulation, demonstrating its superior performance in various scenarios. Applying our method to foreign exchange market data further illustrates its practical utility in identifying stochastic regimes and enhancing financial analysis. Our findings advocate for integrating the Paretian kernel estimator into the toolkit of financial analysts and researchers for a more nuanced understanding of market behavior. |
| Unidade Acadêmica: | Instituto de Ciências Exatas (IE) Departamento de Estatística (IE EST) Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE) Departamento de Administração (FACE ADM) |
| Programa de pós-graduação: | Programa de Pós-Graduação em Estatística Programa de Pós-Graduação em Administração |
| DOI: | https://doi.org/10.1016/j.physa.2024.129850 |
| Versão da editora: | https://www.sciencedirect.com/science/article/pii/S0378437124003595?via%3Dihub |
| Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.