Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/53326
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_BivariateLogSymmetric.pdf4,2 MBAdobe PDFVisualizar/Abrir
Título: Bivariate log-symmetric regression models applied to newborn data
Autor(es): Santos, Helton Saulo Bezerra dos
Gabriel, Roberto Vila
Souza, Rubens Batista de
ORCID: https://orcid.org/0000-0002-4467-8652
https://orcid.org/0000-0003-1073-0114
https://orcid.org/0000-0002-1854-5805
Afiliação do autor: Universidade de Brasília, Department of Statistics
Federal University of Pelotas, Department of Economics
Universidade de Brasília, Department of Statistics
Universidade de Brasília, Department of Statistics
Assunto: Dispersão variável
Correlação variável
Regressão linear
Recém-nascidos
Data de publicação: 5-out-2024
Editora: MDPI
Referência: SANTOS, Helton Saulo Bezerra dos; GABRIEL, Roberto Vila; SOUZA, Rubens Batista de. Bivariate log-symmetric regression models applied to newborn data. Symmetry, Basel, v. 16, n. 10, e1315, 2024. DOI: https://doi.org/10.3390/sym16101315. Disponível em: https://www.mdpi.com/2073-8994/16/10/1315. Acesso em: 24 nov. 2025.
Abstract: This paper introduces bivariate log-symmetric models for analyzing the relationship between two variables, assuming a family of log-symmetric distributions. These models offer greater flexibility than the bivariate lognormal distribution, allowing for better representation of diverse distribution shapes and behaviors in the data. The log-symmetric distribution family is widely used in various scientific fields and includes distributions such as log-normal, log-Student-t, and log-Laplace, among others, providing several options for modeling different data types. However, there are few approaches to jointly model continuous positive and explanatory variables in regression analysis. Therefore, we propose a class of generalized linear model (GLM) regression models based on bivariate log-symmetric distributions, aiming to fill this gap. Furthermore, in the proposed model, covariates are used to describe its dispersion and correlation parameters. This study uses a dataset of anthropometric measurements of newborns to correlate them with various biological factors, proposing bivariate regression models to account for the relationships observed in the data. Such models are crucial for preventing and controlling public health issues.
Unidade Acadêmica: Instituto de Ciências Exatas (IE)
Departamento de Estatística (IE EST)
Programa de pós-graduação: Programa de Pós-Graduação em Estatística
DOI: https://doi.org/10.3390/sym16101315
Versão da editora: Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.