Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/52513
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorSilva, Willian Cintra da-
dc.contributor.authorFreitas, Mirelson Martins-
dc.contributor.authorMa, To Fu-
dc.contributor.authorMarín-Rubio, Pedro-
dc.date.accessioned2025-09-25T13:51:32Z-
dc.date.available2025-09-25T13:51:32Z-
dc.date.issued2024-01-23-
dc.identifier.citationSILVA, Willian Cintra da; FREITAS, Mirelson Martins; MA, To Fu; MARÍN-RUBIO, Pedro. Multivalued dynamics of non-autonomous reaction–diffusion equation with nonlinear advection term. Chaos, Solitons & Fractals, [S.l], v. 180, e114499, 2024. DOI: https://doi.org/10.1016/j.chaos.2024.114499. Disponível em: https://www.sciencedirect.com/science/article/pii/S096007792400050X?via%3Dihub. Acesso em: 19 ago 2025.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/52513-
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleMultivalued dynamics of non-autonomous reaction–diffusion equation with nonlinear advection termpt_BR
dc.typeArtigopt_BR
dc.subject.keywordSemicontinuidade superiorpt_BR
dc.subject.keywordEquação de reação-difusãopt_BR
dc.identifier.doihttps://doi.org/10.1016/j.chaos.2024.114499pt_BR
dc.description.abstract1In this paper, we investigate a reaction–diffusion population model with a nonlinear advection term and a time-dependent force given by the equation 𝑢𝑡 − 𝛥𝑢 + ⃗𝛼 ⋅ ∇𝑢 𝑝 = 𝑓(𝑢) + ℎ(𝑡) in (𝜏, ∞) × 𝛺, subject to the boundary condition 𝑢 = 0 on (𝜏, ∞) × 𝜕𝛺. Here, 𝛺 ⊂ R𝑁 with 𝑁 ≥ 1 is a bounded domain with smooth boundary, 𝜏 ∈ R, ⃗𝛼 = (𝛼1 , …, 𝛼𝑁 ) is a given advective direction and 𝑝 > 1. The presence of the nonlinear advection term ⃗𝛼 ⋅ ∇𝑢 𝑝 introduces technical difficulties in the analysis, leading to a scenario where the uniqueness of weak solutions cannot be guaranteed. Consequently, the equation generates a multi-valued nonautonomous dynamical system. In this context, we establish the existence of minimal pullback attractors, considering universes of bounded and tempered sets. Moreover, we explore the relationships between these pullback attractors. Finally, we prove the upper semicontinuity of pullback attractors with respect to the advective vector ⃗𝛼 .pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-6437-3576pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-6942-3931pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5746-6229pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-6215-1651pt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Mathematicspt_BR
dc.contributor.affiliationFederal University of Parápt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Mathematicspt_BR
dc.contributor.affiliationUniversidad de Sevilla, Dpto. Ecuaciones Diferenciales y Análisis Numéricopt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
Collection(s) :Artigos publicados em periódicos e afins

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/52513/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.