Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/47536
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
2019_SauloBenchimolBastos.pdf3,16 MBAdobe PDFVoir/Ouvrir
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.advisorCajueiro, Daniel Oliveira-
dc.contributor.authorBastos, Saulo Benchimol-
dc.date.accessioned2024-01-27T14:49:27Z-
dc.date.available2024-01-27T14:49:27Z-
dc.date.issued2024-01-27-
dc.date.submitted2019-06-28-
dc.identifier.citationBASTOS, Saulo Benchimol. Document representations and its measurements applied to finance. 2019. 116 f., il. Tese (Doutorado em Economia) — Universidade de Brasília, Brasília, 2019.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/47536-
dc.descriptionTese (doutorado) — Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Departamento de Economia, Departamento de Economia, Programa de Pós-Graduação em Economia, 2019.pt_BR
dc.description.abstractUma representação de documento é a descrição matemática de um texto. Aprender a representar informação é o passo inicial para uma extração automatizada de conhecimento. Reescrevemos a metodologia para extrair sentimento do texto, presente na literatura econômica, como um problema de recuperação de informação, possibilitando assim a aplicação de técnicas consagradas em ciência da computação. Mostramos que a escolha da ponderação adequada da matriz TF-IDF (frequência do termo-inverso da frequência do documento) e representações densas levam a resultados mais consistentes. Além disso, usamos documentos completos, em vez de versões filtradas com dicionários, como variáveis de séries temporais, o que só foi possível devido a representações densas. Propomos dois modelos para extrair sentimento do texto. Primeiro, um que aprende o vocabulário de acordo com movimentos em uma variável específica. Validamos nosso modelo usando o retorno overnight no mercado de ações; encontramos evidências de que o sentimento prevê retornos, que as notícias em t − 1 têm o maior efeito sobre os retornos em t e que a positividade ou negatividade de uma palavra depende do contexto. Segundo, usamos variáveis quantitativas e texto para criar um vetor de sentimento cujas coordenadas se relacionam entre si, em vez de simples números. Encontramos com sucesso estados opostos em um sentimento bidimensional, otimismo e pessimismo, cujas regressões em variáveis do mercado financeiro produzem resultados que têm amparo em teorias financeiras.pt_BR
dc.language.isoengpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleDocument representations and its measurements applied to financept_BR
dc.typeTesept_BR
dc.subject.keywordAnálise textualpt_BR
dc.subject.keywordRepresentação da informaçãopt_BR
dc.subject.keywordAnálise de sentimentopt_BR
dc.subject.keywordMercado financeiropt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.unb.br, www.ibict.br, www.ndltd.org sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra supracitada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1A document representation is the mathematical description of a text. Learning how to represent information is the initial step towards an automated extraction of knowledge. We rewrite the methodology to extract sentiment from text, present in economic literature, as an information retrieval problem, thus enabling the application of consecrated techniques in computer science. We show that the choice of an adequate weighting scheme of the TF-IDF (Term-Frequency Inverse-Document-Frequency) matrix and dense representations leads to more consistent results. Also, we use whole documents, instead of filtered versions with dictionaries, as time series variables, which was only possible due to dense representations. We propose two models to extract sentiment from text. First, one that learns the vocabulary according to movements in a specific variable. We validate our model using the overnight return in the stock market; we find evidence that the sentiment predicts returns, that news in t − 1 has the greatest effect on the overnight returns in t, and that the positivity or the negativity of a word depends on the context. Second, we use quantitative variables and text to create a sentiment vector whose coordinates relate to each other, instead of single numbers. We successfully find opposite states in a two dimensional sentiment, optimism and pessimism, whose regressions on financial market variables produce results that are supported by financial theories.pt_BR
dc.description.unidadeFaculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE)pt_BR
dc.description.unidadeDepartamento de Economia (FACE ECO)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Economiapt_BR
Collection(s) :Teses, dissertações e produtos pós-doutorado

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/47536/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.