Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/42003
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ARTIGO_MildSteelGMA.pdf10,55 MBAdobe PDFVoir/Ouvrir
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorCaio, Leandro Bruno Alves-
dc.contributor.authorSilva, Alysson Martins Almeida-
dc.contributor.authorAlvarez Bestard, Guillermo-
dc.contributor.authorVieira, Lais Soares-
dc.contributor.authorCarvalho, Guilherme Caribé de-
dc.contributor.authorAlfaro, Sadek Crisóstomo Absi-
dc.date.accessioned2021-09-02T10:56:33Z-
dc.date.available2021-09-02T10:56:33Z-
dc.date.issued2021-08-13-
dc.identifier.citationCAIO, Leandro Bruno Alves et al. Mild steel GMA welds microstructural analysis and estimation using sensor fusion and neural network modeling. Sensors, v. 21, n. 16, 5459, 2021. DOI: https://doi.org/10.3390/s21165459. Disponível em: https://www.mdpi.com/1424-8220/21/16/5459. Acesso em: 02 set. 2021.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/42003-
dc.language.isoInglêspt_BR
dc.publisherMDPI-
dc.rightsAcesso Abertopt_BR
dc.titleMild steel GMA welds microstructural analysis and estimation using sensor fusion and neural network modelingpt_BR
dc.typeArtigopt_BR
dc.subject.keywordGMAWpt_BR
dc.subject.keywordEstimativa de microestruturapt_BR
dc.subject.keywordRedes neuraispt_BR
dc.subject.keywordFusão de sensorespt_BR
dc.rights.licenseCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.3390/s21165459pt_BR
dc.description.abstract1This study aims at evaluating the efficiency of sensor fusion, based on neural networks, to estimate the microstructural characteristics of both the weld bead and base material in GMAW processes. The weld beads of AWS ER70S-6 wire were deposited on SAE 1020 steel plates varying welding voltage, welding speed, and wire-feed speed. The thermal behavior of the material during the process execution was analyzed using thermographic information gathered by an infrared camera. The microstructure was characterized by optical (confocal) microscopy, scanning electron microscopy, and X-ray Diffraction tests. Finally, models for estimating the weld bead microstructure were developed by fusing all the information through a neural network modeling approach. A R value of 0.99472 was observed for modelling all zones of microstructure in the same ANN using Bayesian Regularization with 17 and 15 neurons in the first and second hidden layers, respectively, with 4 training runs (which was the lowest R value among all tested configurations). The results obtained prove that RNAs can be used to assist the project of welded joints as they make it possible to estimate the extension of HAZ.pt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0001-6659-441Xpt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0002-7426-0687pt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0002-0361-0555pt_BR
Collection(s) :Artigos publicados em periódicos e afins

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/42003/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.