Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/39955
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMaciel, Susanne Tainá Ramalho-
dc.contributor.authorBiloti, Ricardo-
dc.date.accessioned2021-01-25T18:15:33Z-
dc.date.available2021-01-25T18:15:33Z-
dc.date.issued2020-09-
dc.identifier.citationMACIEL, Susanne; BILOTI, Ricardo. A statistics-based descriptor for automatic classification of scatterers in seismic sections. Geophysics, v. 85, n. 5, 2020. DOI: https://doi.org/10.1190/geo2018-0673.1. Disponível em: https://library.seg.org/doi/abs/10.1190/geo2018-0673.1.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/39955-
dc.language.isoInglêspt_BR
dc.publisherSociety of Exploration Geophysicistspt_BR
dc.rightsAcesso Restritopt_BR
dc.titleA statistics-based descriptor for automatic classification of scatterers in seismic sectionspt_BR
dc.typeArtigopt_BR
dc.subject.keywordDifraçãopt_BR
dc.subject.keywordRadar de penetração no solopt_BR
dc.identifier.doihttps://doi.org/10.1190/geo2018-0673.1pt_BR
dc.relation.publisherversionhttps://library.seg.org/doi/abs/10.1190/geo2018-0673.1pt_BR
dc.description.abstract1Discontinuities and small structures induce diffractions on seismic or ground-penetrating radar (GPR) acquisitions. Therefore, diffraction images can be used as a tool to access valuable information concerning subsurface scattering features, such as pinch outs, fractures, and edges. Usually, diffraction-imaging methods operate on diffraction events previously detected. Pattern-recognition methods are efficient to detect, image, and characterize diffractions. The use of this kind of approach, though, requires a numerical description of image points on a seismic section or radargram. We have investigated a new descriptor for seismic/GPR data that distinguishes diffractions from reflections. The descriptor consists of a set of statistical measures from diffraction operators sensitive to kinematic and dynamic aspects of an event. We develop experiments in which the proposed descriptor was incorporated into a pattern-recognition routine for diffraction imaging. The obtained method is useful for performing the automatic classification of image points using supervised and unsupervised algorithms, as a complementary step to Kirchhoff imaging. We also develop a new type of filtering, designed to address anomalies on the diffraction operators caused by interfering events. We evaluate the method using synthetic seismic data and real GPR data. Our results indicate that the descriptor correctly discriminates diffractions and shows promising results for low signal-to-noise-ratio situations.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-6800-0002pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5186-9705pt_BR
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro sencillo del ítem " class="statisticsLink btn btn-primary" href="/handle/10482/39955/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.